

Government of the People's Republic of Bangladesh

Ministry of Housing and Public Works **Urban Development Directorate (UDD)**

Preparation of Development Plan for Fourteen Upazilas

Package-04

(Saghata Upazila, District: Gaibandha; Sariakandi Upazila and Sonatala Upazila, District: Bogra)

FINAL SURVEY REPORT

HYDROLOGICAL SURVEY
Of
Sariakandi Upazila, Bogra

June, 2017

Letter of Transmittal

Ref No.: MEPC/UDD/2017/56	Date: 04.06.2017
То	
The Project Director	
"Preparation of Development Plan for Fourteen Upazilas" Pr	roject
Urban Development Directorate (UDD)	
82 Segun Bagicha, Dhaka-1000.	
Subject: Submission of the Final Hydrological Survey Bogra.	Report of Sariakandi Upazila,
Dear Sir,	
I have the pleasure to submit herewith the Final Hydrological Upazila, Bogra District under " Preparation of Developmon Project " Package No: 04 (Saghata Upazila, District- Gariakandi Upazila, District- Bogra) for your kind information	ent Plan for Fourteen Upazilas aibandha; Sonatala Upazila and
Thanking you and assuring you of our best services.	
Best Regards	
(Engr. A. Sobahan) Managing Director of MEPC	(Shamim Mahabubul Haque) Team Leader, Package-4

MEPC i

Executive Summary

Hydrological survey conducted at Sariakandi Upazila under Bogra district includes in this report. The task is a part of the project, "Preparation of Development Plan for Fourteen Upazilas", Package-4. Bathymetric survey of Bangali River, Ichamati River and Tonnir Khal at Sariakandi Upazila has been completed. During rest of the survey works, information regarding any existing water control structure, river crossings etc. were collected. The existing drains assessed to obtain data also presents in this report. Water logging zones and points also included during survey. Cross sections were taken under considerations and data collected at the points of existing structures, at junctions with and of other channels and rivers for perennial channels. Sizes of the drains were charted at starting, junctions and end points. The measurements of reduced levels of existing grounds at those location were also collected. The levels were measured with respect to nearby benchmarks or temporary benchmarks of authorized organizations like Bangladesh Water Development Board, Public Works Department, Roads and Highways Department, Local Government Engineering Department, etc. GPS locations at each BM/TBM location, at the point of start of each cross section, at any structure location and at all the control points of the drains were recorded. Flow directions, channel names, presence of tidal effects data were also taken during survey. The information will be incorporated with the DEM on GIS and if needed, adjusted according to the established GCPs. The information will be incorporated with the DEM on GIS and will be adjusted according to the established GCPs if needed. Any sort of numerical watershed analysis and hence extrapolate a prediction for the future can be facilitate through the process. This report also presents the analyzed data of water level gauge stations, the rainfall data analysis and the project site data deduced from them.

MEPC ii

Table of Contents

		Page No.
Lette	r of Transmittal	i
Exec	utive Summary	ii
Table	e of Contents	iii
List o	of Tables	iv
List o	of Figures	iv
List o	of Maps	v
List o	of Plates	v
List o	of Abbreviations/Acronyms	vi
СНА	APTER ONE: INTRODUCTION	1
1.1	Background of the Study	1
СНА	APTER TWO: METHODOLOGY	4
2.0	Survey Method	4
2.1	Measuring Reduced Levels	4
2.2	Identification of Location	5
2.3	Data Collection	5
СНА	APTER THREE: PRESENT LAND USED	7
3.0	Survey Results	7
3.1	Survey of Main Rivers	7
3.2	Dependencies	7
3.3	Survey of the Existing Drainage Systems	10
3.4	Samples of Collected Data	10
СНА	APTER FOUR: HYDROLOGIC DATA ANALYSIS	13
4.0	Analysis of Hydrological Data	13
4.1	Estimation of Design Discharge and Water Level	13
4.2	Frequency Analysis	14
4.3	Analytical Frequency Analysis	14
	4.3.1 Extreme Value Distributions	15
	4.3.2 Frequency Analysis using Frequency Factors	16
	4.3.3 Goodness of Fit Test	18
4.4	Disaggregation of Daily Rainfall Data	19
	4.4.1 Rainfall Cascade Disaggregation Model	19

MEPC iii

	P	Page No	Э.
CHAPT	ER FIVE: DESIGNING STORM SEWER	2	1
5.0	Capacity Estimate and Designing Drain Sections (Prismatic)	2	.1
5.1	Manning's Formula	2	1
СНАРТ	TER SIX: CONCLUSION	2	5
6.0	Conclusion	2.	5
REFER	ENCES/BIBLIOGRAPHY	2	6
ANNEX	TURE	3	0
Annexur	re-I (a)	3	1
Annexur	re-I (b)	3	7
Annexur	re-II: Instructions to Surveyors	4	4
Annexur	re-III: Comments and Corrections of TMC Meeting dated on 07.06.2017	4	6
	List of Tables		
	I	Page N	0.
Table 3.1		_	11
Table 3.2	: Sample of Collected water level data of BWDB station SW 11A and SW 15J	d 1	12
Table 5.1	: Manning's N For Channels (Chow 1951)	2	21
	List of Figures		
	I	Page N	0.
Figure 1.	1 : An integrated 1D-2D flood model on a flood plain showing flooditions at different water level and flow time using Mike Flood (DI		2
Figure 1.2	2 : An integrated 1D-2D flood model showing flood conditions in a city using HEC-RAS	area	2
Figure 1.3	3 : Model developed using EPA SWMM simulating undeveloped (left) developed (right) conditions to calculate and compare the differenc discharge		2
Figure 2.1	1 : A Dumpy level establishes a horizontal plane to measure the related elevation differences throughout a project area. A hand GPS is used to the location of the base		4
Figure 3.	1 : Cross-Section of Bangali River at Chainage of N=2745569.12m E=756041.72m as surveyed	and 1	10

MEPC iv

	Page No
Figure 3.2	: Cross-Section of Bangali River at Chainage of N=2754762.65m and 13 E=758876.2m as surveyed
Figure 3.3	: Cross-Section of Bangali River at Chainage of N=2749474.71m and 12 E=759583.2m as surveyed
Figure 3.4	: Locations of BWDB Water Level, Discharge and Rainfall gauge stations in and around Shariakandi, Bogra, of which the data has been collected (SW 11A, SW 15J, CL 11, CL 216)
	List of Maps
	Page No
-	Map Showing The Main Drainage Channels As Identified At Sariakandi Upazila Under Bogra District
•	Map Showing The Main Drainage Channels As Identified At Sariakandi Paurashava Under Bogra District
	List of Plates
	Page No
Plate 2.1:	Bridge over Bangali River near Jorgacha
Plate 2.2:	Mathurapara Hard Point on the Bank of the Jamuna River
Plate 2.3:	Sariakandi Fishpass

MEPC v

List of Abbreviations/Acronyms

GIS Geographical Information System

BADC Bangladesh Agricultural Development Corporation

BM Benchmark

BMD Bangladesh Meteorological Department BWDB Bangladesh Water Development Board

DEM Digital Elevation Model EGL Existing Ground Level

EPA SWMM The United States Environmental Protection Agency (EPA) Storm Water

Management Model (SWMM)

EV I The first asymptotic distribution of extreme values

GCP Ground Control Point

GPS Global Positioning System

HEC-HMS The Hydrologic Modeling System is designed to simulate the precipitation

runoff processes of dendritic drainage basins. HEC-HMS is a product of the

Hydrologic Engineering Center within the U.S. Army Corps of Engineers.

HEC-RAS A computer program that models the hydraulics of water flow through natural

rivers and other channels developed by the US Department of Defense, Army

Corps of Engineers.

HFL Highest Flood Level

IDF Intensity Duration Frequency

L/B Left bank

LFL Lowest Flood Level

LGED Local Government Engineering Department mPWD RL found against a PWD benchmark in meters

PWD Public Works Department

R\B Right Bank

RHD Roads and Highway Department

RL Reduced Level

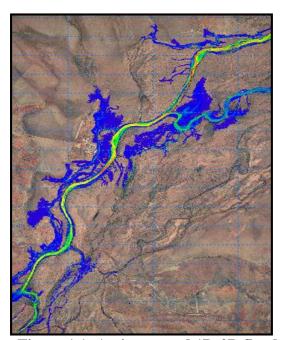
TBM Temporary Benchmark

UDD Urban Development Directorate

MEPC Modern Engineers Planners and Consultant

MEPC vi

CHAPTER ONE: INTRODUCTION


1.1 Background of the Study

The project, "Preparation of Development Plan for Fourteen Upazilas" was initiated by Urban Development Directorate, Ministry of Housing and Public Works, Government of Bangladesh. The main objective of the project is upgrading the living standard of the local people. The Bangali River is the main drainage channel in the area. Numerous unnamed small channels and water courses carry water from the adjacent low areas and discharges into Bangali River. Ichamati, a distributary of Bangali River off-takes from the river near Jorgacha Bazar. 2.0 Km from the off-take, another khal called Tonnir Khal diverges from Ichamati River. Although The Jamuna River is close by, the banks of that river are protected with flood and erosion protection works which prevent the area from heavy flooding. If the flood embankment works do not breach, the area only faces moderate flooding during monsoon. Normally, the highest level of monsoon flood sustains for a month or two and then subsides. Because of the flood plain mechanism the slope of the land here is towards Bangali River, making it the major drainage channel. Drainage system is not effective and sufficient in the urban areas. To understand flooding conditions, identify the water logging areas and establish the drainage requirements flood modeling software should be used. Models should also be used to assess the efficiency of the existing and proposed drainage system.

One aspect of this Hydrological Survey is the bathymetric survey of the Bangali River, Ichamati River and Tonnir Khal to provide bathymetric information. Since the Jamuna River is severed by the flood embankments and protective works from the watershed of Bangali River, bathymetric survey of that river is not necessary. During bathymetric survey, information regarding any hydraulic structure is collected. "Burning" process is used to incorporate the field data in the DEM. It is required to analyze the surface water flow to assess flood using flood modeling software. It is used to assess the flood conditions during different time period and season against different water levels and discharge (Sample results shown in Figure 1.1 and Figure 1.2). Flood will be overstate and the analysis will be faulty if the actual cross section is not obtained. This type of analysis will be helpful for preparation of effective and long lasting development plans for this Upazila. Hence, accuracy of the analysis is of prime importance.

Discharge and rainfall data of the vicinity have been collected from secondary source and analyzed. Water level data of BWDB gauge stations SW 11A and SW 15J at Shariakandi have been collected. The rainfall data of the stations CL 11 at Dhunat and CL 216 at Shibganj, Bogra have been collected. Water level, discharge and rainfall data for different return period are

obtained using the rainfall data. The water level and discharge data are needed to set the boundary condition in flood models. The rainfall data will be used to obtain runoffs to calculate discharge at pour points of the sub-catchments.

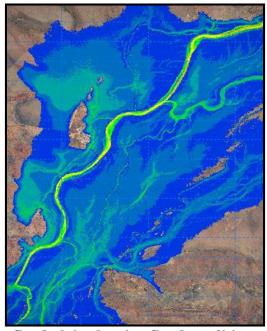


Figure 1.1: An integrated 1D-2D flood model on a flood plain showing flood conditions at different water level and flow time using Mike Flood (DHI)

Figure 1.2: An integrated 1D-2D flood model showing flood conditions in a city area using HEC-RAS

Understanding the water logging problems within the town area and proposing a comprehensive drainage system is another aspect of the survey. Assessment of capacity and utility of any existing drainage system and planning drains is required. Information of the existing drains in Sonatala have been collected which includes depth, width and EGL at the junction points of the drains. 3-hourly rainfall data, collected from Goddard Earth Sciences Data and Information

Service Center, will be used to prepare the hourly rainfall data or the intensity duration frequency (IDF) curve for designing storm sewer system. This will be used to assess the capacity of the existing drainage system and in designing the proposed drainage system (Figure 1.3).

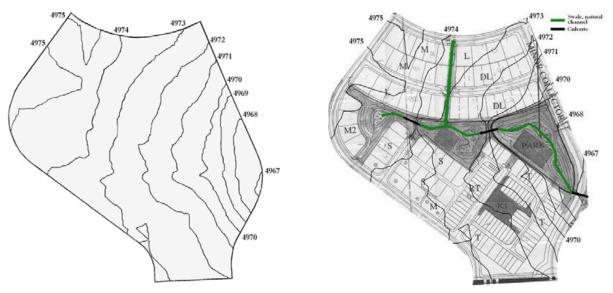


Figure 1.3: Model developed using EPA SWMM simulating undeveloped (left) and developed (right) conditions to calculate and compare the difference of discharge

With the above in view, the overall objectives of the survey are as listed below:

- Bathymetric survey of Bangali River.
- Identification of hydraulic structures and collecting information regarding capacity and sill levels of the structures.
- Identification of flood hazard locations.
- Identification of flow directions.
- Collection of observed flood levels in the field.
- Collecting information of any existing drainage system.
- Identification of water logging zones.
- Collecting information regarding encroachments of natural water bodies and drains.
- Collection of water level, discharge and rainfall data from secondary sources.

The analyses of the collected water level data done using EV I distribution are added in Annexure-I (b). The Rest of the analysis using the Normal distribution, Log normal distribution and Log Pearson III distribution along with the goodness of fit analysis will be added in the final planning report of the project, "Preparation of Development Plan for Fourteen Upazilas".

CHAPTER TWO: METHODOLOGY

2.0 Survey Method

2.1 Measuring Reduced Levels

To measure the reduced levels, dumpy levels and 5m staffs were used. In case of rivers, the levels were measured with respect to the nearest known benchmarks of Bangladesh Water Development Board or temporary benchmarks of any authorized government organizations viz., Roads and Highways Department or Local Government Engineering Department etc. After establishing a horizontal line of collimation/line of sight with respect to a BM/TBM, staff readings are taken within the range of visibility of the dumpy level. For any reading beyond the visibility range, the dumpy level needs a change of station. A temporary benchmark is established and further measurements are made with respect to that. In case of a change of level of more than the height of the staff (5m generally), the levelling machine needs to be shifted and setup again. Subtracting the level of line of sight from the staff readings provides the reduced levels at the point concerned. In Figure 2.1, a schematic diagram of survey method using Dumpy Levels is shown. In Plate 2.1 and Plate 2.2, a dumpy level, a 5m staff and a view of the cross-hair is shown.

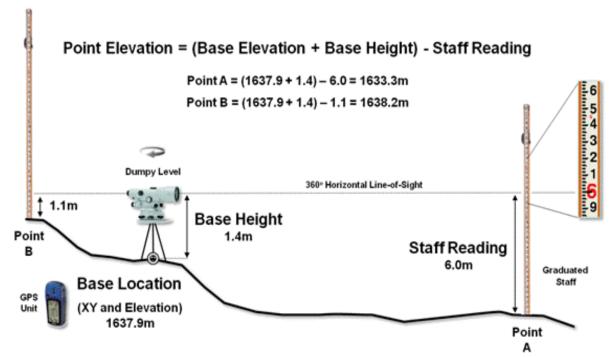


Figure 2.1: A Dumpy level establishes a horizontal plane to measure the relative elevation differences throughout a project area. A hand GPS is used to get the location of the base.

2.2 Identification of Location

A hand GPS was used to identify the location of the cross-sections, structures, drains control points etc.

2.3 Data Collection

To collect information regarding water control structures in the vicinity, the government organizations that are responsible for any development works regarding water resources development were contacted. The three government organizations that are active in the area are Bangladesh Water Development Board (BWDB), Local Government Engineering Department (LGED) and Bangladesh Agricultural Development Corporation (BADC). Key information of the structures about invert level, number and size of vents etc. were collected. Plate 2.1 Shows Bridge over Bangali River near Jorgacha. Plate 2.2 shows the Mathurapara hard point on the bank of the Jamuna River. Plate 2.3 shows the Sariakandi Fishpass.

Source: Field Survey, 2015

Plate 2.1: Bridge over Bangali River near
Jorgacha

Source: Field Survey, 2015

Plate 2.2: Mathurapara Hard Point on the Bank of the Jamuna River

Plate 2.3: Sariakandi Fishpass

To identify locations that are prone to flood hazards or water logging problems, questionnaire was prepared and information was collected accordingly. The questionnaire is attached to Annexure-II. During the engineering survey, information like highest and normal flood levels, highest tide levels and lowest tide levels were collected from the local farmers, fishermen or boatmen.

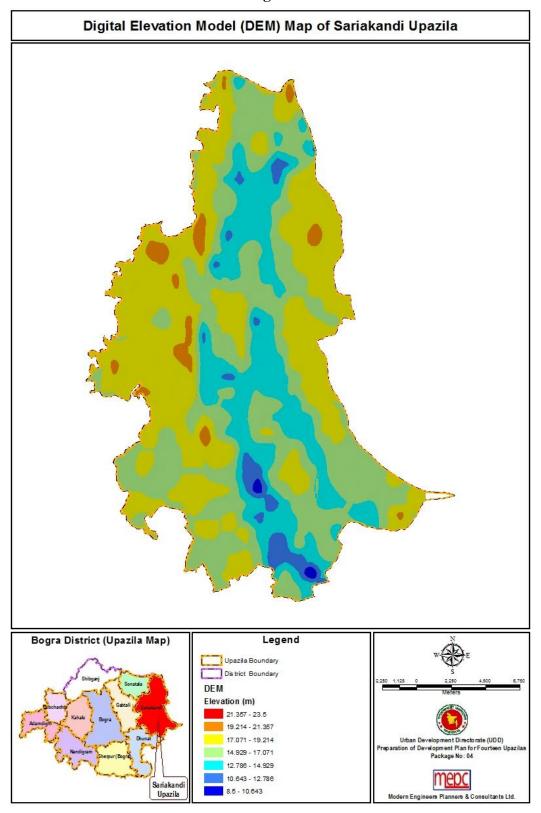
As for the secondary data, water level data of the gauge stations SW 11A and 15J of Bangladesh water development are collected. Daily Rainfall data of BWDB gauge CL 11 and CL 216 has also been collected.

CHAPTER THREE: FINDINGS OF SURVEY WORKS

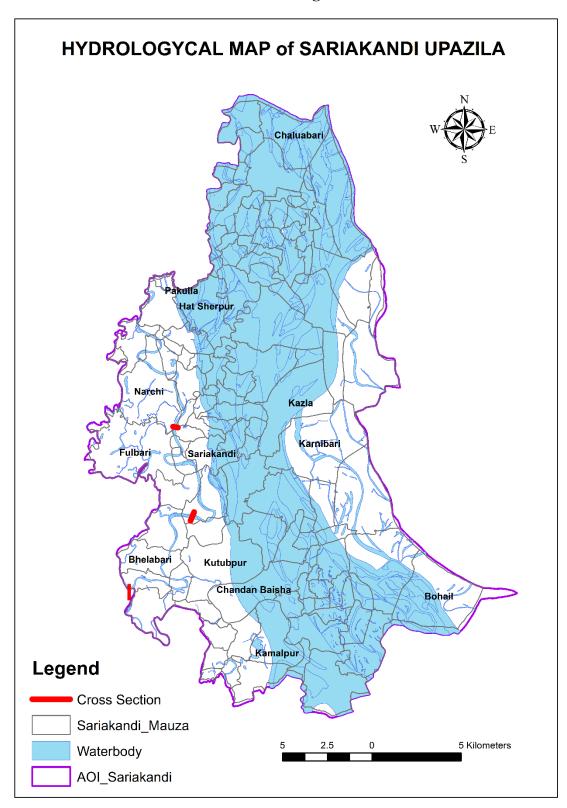
3.0 Survey Results

3.1 Survey of Main Rivers

The bathymetric survey of the Bangali River, Ichamati River and Tonnir Khal has been completed, in addition to that, Bangali River being a very big river makes survey works during rainy season complicated. The locations of cross-sections to be taken are shown in Map 3.2. Cross-sections have been prepared using the reduced levels obtained in the field against Bangladesh Water Development Board benchmarks. Later, when the photogrammetric images will be processed, the cross-sections will be converted to MSL datum. During the physical feature survey, information about hydraulic structures on the rivers and along the banks of the rivers has already been collected.


3.2 Dependencies

The hydrological works are dependent upon the land use survey, topographic survey and physical feature survey for the respective outcomes of those survey works done under this project. During Physical feature survey, information regarding hydraulic structures has been collected. The local offices of Government Agencies like BWDB, BADC and LGED have been contacted to get data about any irrigation projects or drainage projects that is either currently being operated or being planned by them. The responses of the local populace have been inquired to understand their attitude towards those projects.


The land use survey will be required to prepare the rainfall runoff model for Sonatala. Depending upon the use of land, the runoff over a certain segment of land will vary. On a surface exhibiting vegetation, the rainwater shall be impeded from reaching any natural or manmade drainage system. A portion of the precipitation will be intercepted by the canopy before the rain water can reach the ground, also the infiltration rate will be high. All these factors prevent the accumulation of rain water and thus reduce runoff. On the other hand, on a buildup area, much of the vegetation is gone and the land is more or less covered with impervious construction. Interception and infiltration hence reduces, resulting in an increase in net runoff.

Topographic survey is required to understand the undulations on the ground surface. On a steep slope, the water flows quicker towards drainage bodies which are vice versa for a flat land. The digital 3D stereo imageries that have been collected as a measure of the survey works will be used to prepare a Digital Elevation Model (DEM) of the land.

Map 3.1: Map showing the main drainage channels as identified at Sariakandi Upazila under Bogra District

Map 3.2: Map Showing the Main Drainage Channels as Identified at Sariakandi Paurashava under Bogra District

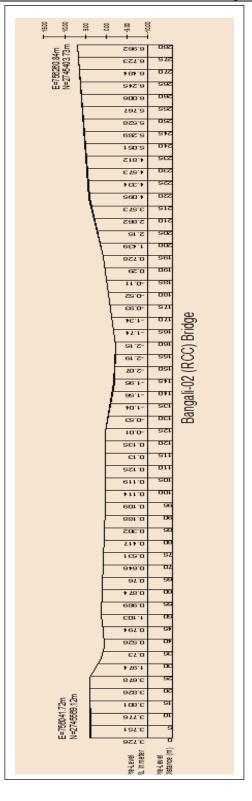


Figure 3.1: Cross-Section of Bangali River at Chainage of N=2745569.12m and E=756041.72m as surveyed.

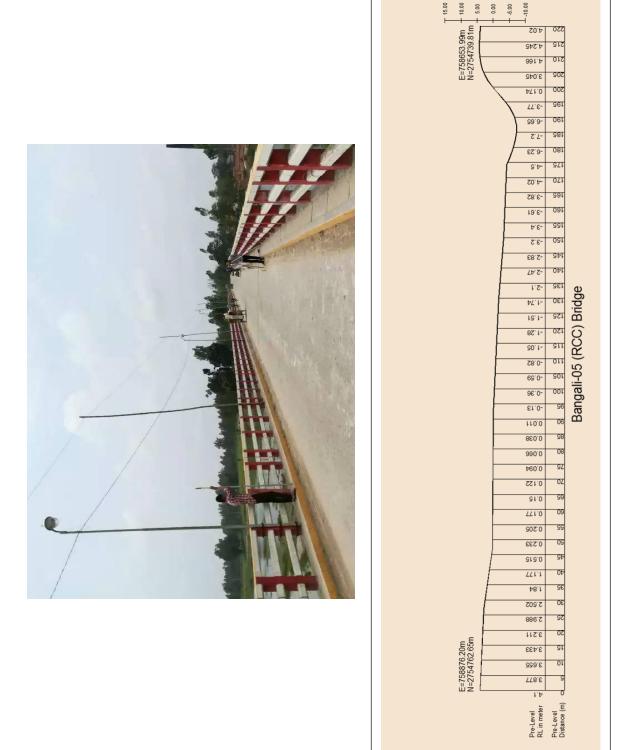


Figure 3.2: Cross-Section of Bangali River at Chainage of N=2754762.65m and E=758876.2m as Surveyed

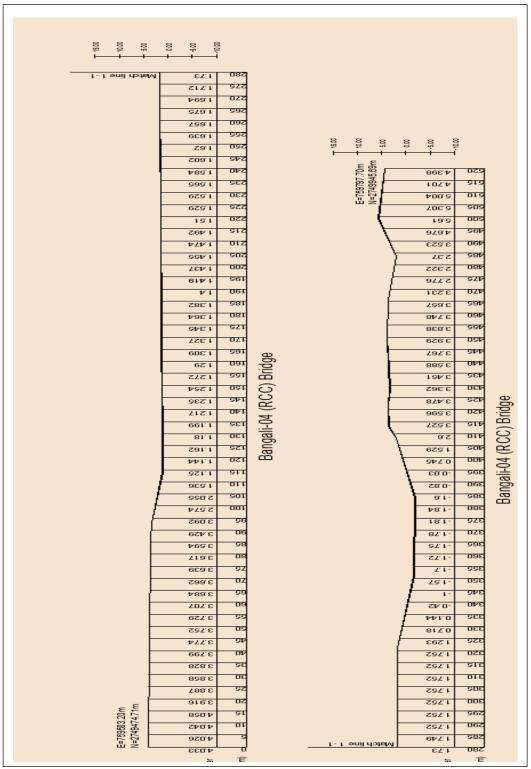


Figure 3.3: Cross-Section of Bangali River at Chainage of N=2749474.71m and E=759583.2m as surveyed

3.3 Survey of the Existing Drainage Systems

Information of existing drains at Sonatala regarding depth and width, RL and GPS locations at different junction points, starting points and ending points are obtained. Names of roads alongside the drains are also collected. Lining conditions (Lined or Unlined) of the existing drains have been identified during the survey. This information would be used to prepare a drainage inventory to assess the capacity of the existing drainage system and with a view to that; a drainage improvement plan will be prepared.

3.4 Samples of Collected Data

The BWDB Water Level, Discharge and Rainfall gauge stations of which the data has been collected are shown on Figure 3.4. The sample data are charted on Table 3.1 and Table 3.2.

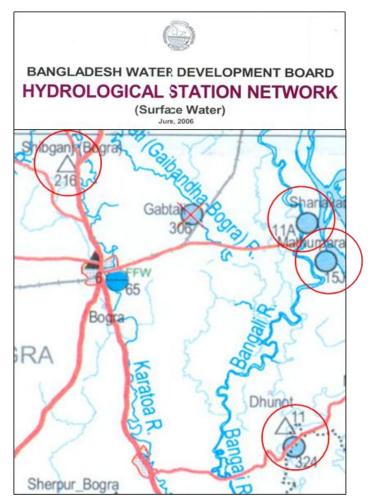


Figure 3.4: Locations of BWDB Water Level, Discharge and Rainfall gauge stations in and around Shariakandi, Bogra, of which the data has been collected (SW 11A, SW 15J, CL 11, CL 216)

Table 3.1: Sample of Collected rainfall data of BWDB station CL 11 and CL 216

District	Station	Station_ID	DATE	Rainfall(m)	District	Station	Station_ID	DATE	Rainfall(m)
Bogra	Dhunot	CL11	01-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	01-jan-2002	0.00
Bogra	Dhunot	CL11	02-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	02-jan-2002	0.00
Bogra	Dhunot	CL11	03-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	03-jan-2002	0.00
Bogra	Dhunot	CL11	04-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	04-jan-2002	0.00
Bogra	Dhunot	CL11	05-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	05-jan-2002	0.00
Bogra	Dhunot	CL11	06-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	06-jan-2002	0.00
Bogra	Dhunot	CL11	07-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	07-jan-2002	0.00
Bogra	Dhunot	CL11	08-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	08-jan-2002	0.00
Bogra	Dhunot	CL11	09-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	09-jan-2002	0.00
Bogra	Dhunot	CL11	10-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	10-jan-2002	0.00
Bogra	Dhunot	CL11	11-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	11-jan-2002	0.00
Bogra	Dhunot	CL11	12-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	12-jan-2002	0.00
Bogra	Dhunot	CL11	13-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	13-jan-2002	0.00
Bogra	Dhunot	CL11	14-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	14-jan-2002	0.00
Bogra	Dhunot	CL11	15-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	15-jan-2002	0.00
Bogra	Dhunot	CL11	16-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	16-jan-2002	0.00
Bogra	Dhunot	CL11	17-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	17-jan-2002	0.00
Bogra	Dhunot	CL11	18-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	18-jan-2002	0.00
Bogra	Dhunot	CL11	19-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	19-jan-2002	0.00
Bogra	Dhunot	CL11	20-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	20-jan-2002	0.00
Bogra	Dhunot	CL11	21-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	21-jan-2002	0.00
Bogra	Dhunot	CL11	22-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	22-jan-2002	0.00
Bogra	Dhunot	CL11	23-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	23-jan-2002	0.00
Bogra	Dhunot	CL11	24-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	24-jan-2002	0.00
Bogra	Dhunot	CL11	25-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	25-jan-2002	0.00
Bogra	Dhunot	CL11	26-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	26-jan-2002	0.00
Bogra	Dhunot	CL11	27-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	27-jan-2002	0.00
Bogra	Dhunot	CL11	28-jan-2002	3.00	Bogra	Shibganj (Bogra)	CL216	28-jan-2002	4.00
Bogra	Dhunot	CL11	29-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	29-jan-2002	2.00
Bogra	Dhunot	CL11	30-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	30-jan-2002	0.00
Bogra	Dhunot	CL11	31-jan-2002	0.00	Bogra	Shibganj (Bogra)	CL216	31-jan-2002	0.00
Bogra	Dhunot	CL11	01-feb-2002	0.00	Bogra	Shibganj (Bogra)	CL216	01-feb-2002	0.00

Table 3.2: Sample of Collected water level data of BWDB station SW 11A and SW 15J

RIVER_NAME				Water Level(m)	RIVER_NAME		Station Name	Date	Water Level(m)
Bangali	SW11A	Shariakandi	01-01-2002	12.63	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	01-01-2002	11.06
Bangali	SW11A	Shariakandi	02-01-2002	12.62	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	02-01-2002	11.04
Bangali	SW11A	Shariakandi	03-01-2002	12.62	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	03-01-2002	11.01
Bangali	SW11A	Shariakandi	04-01-2002	12.62	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	04-01-2002	10.98
Bangali	SW11A	Shariakandi	05-01-2002	12.61	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	05-01-2002	10.94
Bangali	SW11A	Shariakandi	06-01-2002	12.61	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	06-01-2002	10.90
Bangali	SW11A	Shariakandi	07-01-2002	12.61	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	07-01-2002	10.87
Bangali	SW11A	Shariakandi	08-01-2002	12.60	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	08-01-2002	10.84
Bangali	SW11A	Shariakandi	09-01-2002	12.60	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	09-01-2002	10.82
Bangali	SW11A	Shariakandi	10-01-2002	12.59	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	10-01-2002	10.80
Bangali	SW11A	Shariakandi	11-01-2002	12.59	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	11-01-2002	10.78
Bangali	SW11A	Shariakandi	12-01-2002	12.58	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	12-01-2002	10.77
Bangali	SW11A	Shariakandi	13-01-2002	12.57	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	13-01-2002	10.76
Bangali	SW11A	Shariakandi	14-01-2002	12.57	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	14-01-2002	10.74
Bangali	SW11A	Shariakandi	15-01-2002	12.57	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	15-01-2002	10.73
Bangali	SW11A	Shariakandi	16-01-2002	12.57	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	16-01-2002	10.71
Bangali	SW11A	Shariakandi	17-01-2002	12.56	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	17-01-2002	10.70
Bangali	SW11A	Shariakandi	18-01-2002	12.56	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	18-01-2002	10.69
Bangali	SW11A	Shariakandi	19-01-2002	12.55	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	19-01-2002	10.68
Bangali	SW11A	Shariakandi	20-01-2002	12.55	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	20-01-2002	10.67
Bangali	SW11A	Shariakandi	21-01-2002	12.55	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	21-01-2002	10.66
Bangali	SW11A	Shariakandi	22-01-2002	12.54	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	22-01-2002	10.65
Bangali	SW11A	Shariakandi	23-01-2002	12.53	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	23-01-2002	10.63
Bangali	SW11A	Shariakandi	24-01-2002	12.52	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	24-01-2002	10.62
Bangali	SW11A	Shariakandi	25-01-2002	12.52	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	25-01-2002	10.61
Bangali	SW11A	Shariakandi	26-01-2002	12.51	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	26-01-2002	10.60
Bangali	SW11A	Shariakandi	27-01-2002	12.50	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	27-01-2002	10.59
Bangali	SW11A	Shariakandi	28-01-2002	12.49	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	28-01-2002	10.61
Bangali	SW11A	Shariakandi	29-01-2002	12.48	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	29-01-2002	10.74
Bangali	SW11A	Shariakandi	30-01-2002	12.47	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	30-01-2002	10.77
Bangali	SW11A	Shariakandi	31-01-2002	12.46	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	31-01-2002	10.75
Bangali	SW11A	Shariakandi	01-02-2002	12.45	Brahmaputra-Jamuna	SW15J	Mathurpara-Milanpur	01-02-2002	10.73

CHAPTER FOUR: HYDROLOGIC DATA ANALYSIS

4.0 Analysis of Hydrological Data

4.1 Estimation of Design Discharge and Water Level

Estimation of both flood discharges and high water levels are necessary for bank protection design. Careful estimation of discharge and water level is important for all sites with erodible banks. This section describes the methods of assessing flood discharge and water level at the site under consideration. The design discharge and water level are determined for selected probability of exceedance or return period.

The design discharge and water level arising from floods should be selected after due consideration of the following:

- The maximum historical discharge as recorded at the site, or as calculated on the basis
 of recorded water level at the site, or as calculated on the basis of measured discharge
 at other points on the river from which corresponding site discharge can reasonably be
 inferred.
- The discharge derived from a frequency analysis using a probability of exceedance or return period which is appropriate to the importance and value of the protection work.
- The maximum historical water level as recorded at the site, or as inferred from observed or recorded water level at other points on the river from which level can reasonably be transferred to the site in question.
- The water level derived from a frequency analysis using a probability of exceedance or return period which is appropriate to the importance and value of the protection work.

In estimating high flows, primary reliance should be placed on careful field investigations, local enquiries and searches of historical records. Data so obtained should be compared with recorded data for hydrometric stations, and supplemented by analytical procedure using stage-discharge curves. At most hydrometric gauging stations reasonably stable relationship exists between water level and discharge. At some sites, however, the stage discharge curve may be quite unstable because of aggradation or degradation at channel bed or backwater effect from downstream, and may change drastically during major floods. A persistent trend of rising or lowering of curve indicates progressive channel aggradation or degradation. The stage corresponding to design flood which exceeds any recorded flow obtained by extrapolating the stage-discharge relationships.

The most commonly used method for estimating design discharge and water level examines the observed discharge and water level to arrive at suitable estimates. The method, known as frequency analysis, is founded on statistical analyses of discharge and water level records. For locations where records of stream flows are available, or where flows from another basin can be transported to the design location, design flood magnitude and water level can be estimated directly from those records by means of frequency analysis.

4.2 Frequency Analysis

Frequency of a hydrological event, such as the annual peak flow is the probability that a value will be equaled or exceeded in any year. This is more appropriately called the exceedance probability, P (F). The reciprocal of the exceedance probability is the return period T in years, that is, $T = \frac{1}{P(F)}$. The length of record should be sufficient to justify extrapolating the frequency relationship. For example, it might be reasonable to estimate a 50-year flood on the basis of a 30-year record, but to estimate a 100-year flood on the basis of a 10-year record would normally be absurd (Neill 1973) (1). Viessman and Lewis (1996) (2) noted that as a general rule, frequency analysis is cautioned when working with shorter records and estimating frequencies of hydrological events greater than twice the record length.

Frequency analysis can be conducted in two ways: one is the analytical approach and the other is the graphical technique in which flood magnitudes are usually plotted against probability of exceedance.

Here in the following sections, procedures are given mostly for discharge frequency analysis; the similar procedures can also be followed for water level frequency analysis.

4.3 Analytical Frequency Analysis

Analytical frequency analysis is based on fitting theoretical probability distributions to given data. Numerous distributions have been suggested on the basis of their ability to 'fit' the plotted data from streams (Linsley et al. 1982) (3). The Log-Pearson Type III (LP3) has been adopted for use in the United States Federal Agencies for flood analysis. The first asymptotic distribution of extreme values (EV1), commonly called Gumbel Distribution has been widely used and is recommended in the United Kingdom. For this project, all the collected data will be analyzed using Normal distribution, Log-Normal distribution, Log-Pearson III distribution and Extreme Variable Distribution and the best fit distribution will be adopted for analysis.

4.3.1 Extreme Value Distributions

Distributions of the extreme values selected from sets of samples of any probability distribution converge to any one of three forms of Extreme Value Distributions, called Type I, II, and III, respectively, when the number of selected extreme values is large. The three limiting forms are special cases of a single distribution called Generalized Extreme Value (GEV) Distribution (Chow et al. 1988) ⁽⁴⁾. The cumulative distribution function for the GEV is:

$$F(x) = \exp\left[-\left(1 - \kappa \frac{x - u}{\alpha}\right)^{\frac{1}{\kappa}}\right]$$
 (1)

Here κ , u, and α are parameters to be determined. For EVI Distribution x is unbounded, while for EVII, x is bounded from below, and for EVIII, x is bounded from above. The EVI and EVII Distributions are also known as the Gumbel and Frechet Distributions, respectively.

The Extreme Value Type I (EVI) cumulative distribution function is:

$$F(x) = \exp\left[-\exp\left(-\frac{x-u}{\alpha}\right)\right] \qquad -\infty \le x \le \infty \tag{2}$$

The parameters are estimated by

$$\alpha = \frac{\sqrt{6}}{\pi} s \quad \text{and} \quad u = \bar{x} - 0.5772\alpha \tag{3}$$

Eq (2) can be expressed as

$$F(x) = e^{-e^{-y}} \tag{4}$$

Where y is the reduced variate defined as

$$y = \frac{x - u}{\alpha} \tag{5}$$

Solving Eq (4) for y:

$$y = -\ln\left[\ln\left(\frac{1}{F(x)}\right)\right] \tag{6}$$

Noting that the probability of occurrence of an event $x \ge x_T$ is the inverse of its return period T, we can write

$$\frac{1}{T} = P(x \ge x_T) = 1 - P(x \le x_T) = 1 - F(x_T)$$

So.

$$F(x_T) = 1 - \frac{1}{T}$$

Substituting for $F(x_T)$ into Eq (6)

$$y_T = -\ln\left[\ln\left(\frac{T}{T-1}\right)\right] \tag{7}$$

For a given return period x_T is related to y_T by Eq (5), or

$$x_T = u + \alpha y_T \tag{8}$$

4.3.2 Frequency Analysis using Frequency Factors

Calculating the magnitudes of extreme events by the method outlined in the above example requires that the probability distribution function be invertible, that is, given a value of T or $F(x_T) = 1 - \frac{1}{T}$, the corresponding value of x_T can be determined. Some probability distribution functions are not readily invertible, like the Normal and Pearson Type III Distributions. Thus an alternative method based on frequency factor is used for calculating the magnitudes of extreme events. Chow (1951) (5) has shown that most frequency functions can be generalized to

$$x_T = \bar{x} + K_T s \tag{9}$$

where x_T is a flood of specified probability or return period T, \bar{x} is the mean of the flood series, s is the standard deviation of the series; and K_T is the frequency factor and is a function of return period and type of probability distribution, as well as coefficient of skewness for skewed distributions, such as LP3.

In the event that the variable analyzed is $y = \log x$, for example as in Lognormal and LP3 Distributions, the same method is applied to the statistics for the logarithms of data using $y_T = \overline{y} + K_T s_y$, and the required value of x_T is found taking antilog of y_T .

Chow (1951) ⁽⁵⁾ proposed the frequency factor as in Eq (9), and it is applicable to many probability distributions used in hydrological frequency analysis. The K-T relationship can be expressed in mathematical terms or by a table.

Normal Distribution: From Eq (9) the frequency factor can be expressed as

$$K_T = \frac{x_T - \bar{x}}{s} = z \tag{10}$$

Thus, for Normal Distribution K_T is the same as the standard normal variable z. The value of z and hence K_T can be obtained from Table 1 in ANNEXURE – I(a).

Lognormal Distribution: The recommended procedure for use of the Lognormal Distribution is to convert the data series to logarithms and compute:

- 1) $y_i = \log x_i$
- 2) Compute the mean, \bar{y} and standard deviation s_y
- 3) Compute $y_T = \bar{y} + K_T s_y$

$$K_T = \frac{y_T - \overline{y}}{s_y} = z$$

So, K_T can be taken from Table 1 in ANNEXURE – I(a).

4) Finally compute $x_T = anti \log y_T$

Log-Pearson Type III (LP3) Distribution: The recommended procedure for use of the LP3 Distribution is to convert the data series to logarithms and compute:

- 1) $y_i = \log x_i$
- 2) Compute the mean, \bar{y} and standard deviation s_y
- 3) Compute coefficient of skewness

$$C_{s} = \frac{n\sum(y_{i} - \bar{y})^{3}}{(n-1)(n-2)s_{y}^{3}}$$

4) Compute
$$y_T = \bar{y} + K_T s_y$$
 (11)

Where K_T is taken from Table 2 in ANNEXURE – I(a)..

5) Finally compute $x_T = anti \log y_T$

Table 3 in ANNEXURE – I(a) gives values of the frequency factors for the LP3 Distribution for various values of return period and coefficient of skewness, C_s . When C_s =0, the frequency factor is equal to the standard normal variable z (Table 1 in ANNEXURE – I(a)).

Extreme Value I (EVI) Distribution: Chow (1951) ⁽⁵⁾ derived the following expression for frequency factor for the EVI Distribution

$$K_T = -\frac{\sqrt{6}}{\pi} \left[0.5772 + \ln \left\{ \ln \left(\frac{T}{T - 1} \right) \right\} \right] \tag{12}$$

When $x_T = \mu$, Eq (9) (in population term) gives $K_T = 0$ and Eq (12) gives T=2.33 years. This is the return period of the mean of the EVI Distribution.

Table of frequency factors for the EVI Distribution, given in Table 3 in ANNEXURE – I(a), is taken from Haan (1977) ⁽⁶⁾. The values computed from the above equation are equivalent to an infinite sample size in Table 3.

4.3.3 Goodness of Fit Test

The goodness of fit of a probability distribution can be tested by comparing the theoretical and sample values of the relative frequency or the cumulative frequency function. In the case of the relative frequency function, the χ^2 – test is used and with cumulative frequency function the Kolmogorov-Smirnov test is used.

Chi-Square Test: The test statistic is given by

$$\chi^{2} = \sum_{i=1}^{k} \frac{n[f_{s}(x_{i}) - p(x_{i})]^{2}}{p(x_{i})}$$
(13)

Where, k is the number of intervals; the sample value of the relative frequency of interval i is, $f_s(x_i) = n_i/n$; the theoretical value of the relative frequency function (also called incremental probability function) is $p(x_i) = F(x_i) - F(x_{i-1})$. It may be noted that $nf_s(x_i) = n_i$, the observed number of occurrences in interval i, and $np(x_i)$ is the corresponding expected number of occurrences in interval i.

To describe the χ^2 test, the χ^2 probability distribution must be defined. A χ^2 distribution with v = k-l-1 degrees of freedom (l is the number of parameters used in fitting the proposed distribution) is the distribution for the sum of squares of v independent standard normal random variables z_i . The critical χ^2 distribution function is tabulated (in Table 4 in ANNEXURE – I(a)) from Haan (1977) ⁽⁶⁾. A confidence level is chosen for the test; it is often expressed as 1- α , where α is termed the significance level.

Kolmogorov-Smirnov Test: The theoretical and sample values of the cumulative frequency are compared with the Kolmogorov-Smirnov (S-K) test. The test statistic D, which is based on deviations of the sample distribution function P(x) from the completely specified continuous hypothetical distribution function $P_o(x)$, such that:

$$D = \max |P(x) - P_o(x)|$$

Developed by Kolmogorov (Kite 1988) ⁽⁷⁾ in 1933, the test requires that the value of D computed from the sample distribution be less than the tabulated value of D (Table 5) at the required confidence level. Kolmogorov-Smirnov test for Gumbel's Extremal Distribution gives better result in Bangladesh.

4.4 Disaggregation of Daily Rainfall Data

4.4.1 Rainfall Cascade Disaggregation Model

Cascade level refers to the time series at a certain resolution. The transition from one cascade level to the higher one, corresponding to a doubling of resolution, is called *modulation*. A time interval at an arbitrary cascade level (i.e. time scale) is termed a box, which is characterized by an associated precipitation amount (0 if dry, >0 if wet). The break-up of a wet box into two equally sized sub-boxes is denoted branching. In one branching, the total amount is redistributed according to two multiplicative weights, $0 \le W_1 \le 1$ and $0 \le W_2 \le 1$ ($W_1 + W_2 = 1$). The model is a multiplicative random cascade of branching number 2 with exact conservation of mass (micro canonical property as opposed to canonical cascades where the volume is only approximately conserved). The model divides daily precipitation into non overlapping time intervals. If the precipitation in a day is P_d , $P_1 = P_dW_1$ is the precipitation amount assigned to the first half of the day, and $P_2 = P_dW_2$ the amount assigned to the second half. Similarly, each half is then branched to a doubled resolution, and so on. The implementation of cascade – based model allows the conversion of daily amount into 12-hourly (1 steps), 6-hourly (2 steps), and 3-hourly (3 steps) values. The short-time intensity disaggregation model (Connolly et al. 1998) (8), is used to have three fine-resolution time interval that are 1-hour, 1/2-hour and 10-minutes. A single Poisson distribution parameter represents the number of events, N, on a rainy day. The density function of the Poisson distribution (adjusted so that N > =1) has the form:

$$f(N) = \frac{\eta^{N-1} \cdot e^{-\eta}}{(N-1)!} \tag{14}$$

Where η is a fitted coefficient. Mean (μ_N) and variance (σ^2_N) are given as:

$$\mu_N = \eta + 1 \tag{15}$$

$$\sigma^2_N = \eta \tag{16}$$

The simulated number of event N is the lowest integer to satisfy:

$$\sum_{i=1}^{N} \frac{\eta^{i-1} \cdot e^{-\eta}}{(i-1)!} \ge U \qquad N \ge 1 \tag{17}$$

Where U is a uniform random number in the range 0–1.

The duration of each event, D, is represented with a gamma distribution. The scale parameter of the gamma distribution, α , has to be estimated and the shape parameter, β , is set held at 2. It results the following density function:

$$f(D) = \alpha^2 \cdot D \cdot e^{-\alpha \cdot D} \tag{18}$$

A uniform random number in the range 0–1, U, is generated and the event duration is simulated by solving the cumulative density function of the gamma distribution using Newton's method:

$$1 - (1 + \alpha \cdot D) \cdot e^{-\alpha \cdot D} = U \tag{19}$$

With these estimated point (10′-30′-1 h, 3 h, 6 h, 12 h and 24 h) following the procedures for the frequency distribution, it is possible to define the rainfall probability curves.

Using the above equations, daily and monthly basis analysis of water level data have been prepared which is shown in Annexure I (b).

CHAPTER FIVE: DESIGNING STORM SEWER

5.0 Capacity Estimate and Designing Drain Sections (Prismatic)

5.1 Manning's Formula

The Manning's formula is a widely used formula around the world to estimate capacity of an open channel or design required section. The formula is also known as Gauckler-Manning-Strickler formula. It is an empirical formula to estimate the average velocity of water flowing through an open channel. The Manning's equation is as follows:

$$V = \frac{K_n}{n} R^{\frac{2}{3}} s^{\frac{1}{2}} \tag{20}$$

Where, V = average velocity of flow (SI unit: m/s; Imperial: ft/s)

 K_n = Unit conversion factor (1.00 for SI unit and 1.49 for Imperial unit)

R = Hydraulic Radius =
$$\frac{P}{A}$$
 (SI unit: m, Imperial: ft)

Here, P = Wetted Perimeter (SI unit: m, Imperial: ft)

A = Cross-sectional area of flow (SI unit: m^2 , Imperial: ft^2)

s = hydraulic gradient of flow (SI unit: m/m, Imperial: ft/ft)

n = Manning's dimensionless roughness coefficient

Manning's roughness coefficient may be selected using the following.

Table 5.1: Manning's n for Channels (Chow (1951)) (5)

Type of Channel and Description	Minimum	Normal	Maximum				
Natural streams - minor streams (top width at flood stage < 100 ft)							
1. Main Channels							
a. clean, straight, full stage, no rifts or deep pools	0.025	0.03	0.033				
b. same as above, but more stones and weeds	0.03	0.035	0.04				
c. clean, winding, some pools and shoals	0.033	0.04	0.045				
d. same as above, but some weeds and stones	0.035	0.045	0.05				
e. same as above, lower stages, more ineffective slopes and sections	0.04	0.048	0.055				
f. same as "d" with more stones	0.045	0.05	0.06				
g. sluggish reaches, weedy, deep pools	0.05	0.07	0.08				
h. very weedy reaches, deep pools, or floodways	0.075	0.1	0.15				

Type of Channel and Description	Minimum	Normal	Maximum
with heavy stand of timber and underbrush			
2. Mountain streams, no vegetation in channel, banks usua	ally steep, trees	and brush	along banks
submerged at high stages			
a. bottom: gravels, cobbles, and few boulders	0.03	0.04	0.05
b. bottom: cobbles with large boulders	0.04	0.05	0.07
3. Floodplains			
a. Pasture, no brush			
1.short grass	0.025	0.03	0.035
2. high grass	0.03	0.035	0.05
b. Cultivated areas			
1. no crop	0.02	0.03	0.04
2. mature row crops	0.025	0.035	0.045
3. mature field crops	0.03	0.04	0.05
c. Brush			
1. scattered brush, heavy weeds	0.035	0.05	0.07
2. light brush and trees, in winter	0.035	0.05	0.06
3. light brush and trees, in summer	0.04	0.06	0.08
4. medium to dense brush, in winter	0.045	0.07	0.11
5. medium to dense brush, in summer	0.07	0.1	0.16
d. Trees			
1. dense willows, summer, straight	0.11	0.15	0.2
2. cleared land with tree stumps, no sprouts	0.03	0.04	0.05
3. same as above, but with heavy growth of sprouts	0.05	0.06	0.08
4. heavy stand of timber, a few down trees, little	0.08	0.1	0.12
undergrowth, flood stage below branches	0.08	0.1	0.12
5. Same as 4. with flood stage reaching branches	0.1	0.12	0.16
4. Excavated or Dredged Channels			
a. Earth, straight, and uniform			
1. clean, recently completed	0.016	0.018	0.02
2. clean, after weathering	0.018	0.022	0.025
3. gravel, uniform section, clean	0.022	0.025	0.03
4. with short grass, few weeds	0.022	0.027	0.033
b. Earth winding and sluggish			
1. no vegetation	0.023	0.025	0.03
2. grass, some weeds	0.025	0.03	0.033
3. dense weeds or aquatic plants in deep channels	0.03	0.035	0.04
4. earth bottom and rubble sides	0.028	0.03	0.035
5. stony bottom and weedy banks	0.025	0.035	0.04

Type of Channel and Description	Minimum	Normal	Maximum
6. cobble bottom and clean sides	0.03	0.04	0.05
c. Dragline-excavated or dredged			
1. no vegetation	0.025	0.028	0.033
2. light brush on banks	0.035	0.05	0.06
d. Rock cuts			
1. smooth and uniform	0.025	0.035	0.04
2. jagged and irregular	0.035	0.04	0.05
e. Channels not maintained, weeds and brush uncut			
1. dense weeds, high as flow depth	0.05	0.08	0.12
2. clean bottom, brush on sides	0.04	0.05	0.08
3. same as above, highest stage of flow	0.045	0.07	0.11
4. dense brush, high stage	0.08	0.1	0.14
5. Lined or Constructed Channels			
a. Cement			
1. neat surface	0.01	0.011	0.013
2. mortar	0.011	0.013	0.015
b. Wood			
1. planed, untreated	0.01	0.012	0.014
2. planed, creosoted	0.011	0.012	0.015
3. un-planed	0.011	0.013	0.015
4. plank with battens	0.012	0.015	0.018
5. lined with roofing paper	0.01	0.014	0.017
c. Concrete			
1. trowel finish	0.011	0.013	0.015
2. float finish	0.013	0.015	0.016
3. finished, with gravel on bottom	0.015	0.017	0.02
4. unfinished	0.014	0.017	0.02
5. gunite, good section	0.016	0.019	0.023
6. gunite, wavy section	0.018	0.022	0.025
7. on good excavated rock	0.017	0.02	
8. on irregular excavated rock	0.022	0.027	
d. Concrete bottom float finish with sides of:			
1. dressed stone in mortar	0.015	0.017	0.02
2. random stone in mortar	0.017	0.02	0.024
3. cement rubble masonry, plastered	0.016	0.02	0.024
4. cement rubble masonry	0.02	0.025	0.03
5. dry rubble or riprap	0.02	0.03	0.035
e. Gravel bottom with sides of:			
1. formed concrete	0.017	0.02	0.025

Type of Channel and Description	Minimum	Normal	Maximum
2. random stone mortar	0.02	0.023	0.026
3. dry rubble or riprap	0.023	0.033	0.036
f. Brick			
1. glazed	0.011	0.013	0.015
2. in cement mortar	0.012	0.015	0.018
g. Masonry			
1. cemented rubble	0.017	0.025	0.03
2. dry rubble	0.023	0.032	0.035
h. Dressed ashlar/stone paving	0.013	0.015	0.017
i. Asphalt			
1. smooth	0.013	0.013	
2. rough	0.016	0.016	
j. Vegetal lining	0.03		0.5

Estimation of capacity of the existing drains and drainage channels will be estimated using Manning's formula. Design sections of the proposed sections will also be calculated using this formula.

CHAPTER SIX: CONCLUSION

6.0 Conclusion

The findings and the collected data during the survey works will be used in the subsequent planning stage of the project, "Preparation of Development Plan for Fourteen Upazilas". The prepared DEM will be used for delineation of catchment area and preparing contours of the project area. The collected water level, rainfall and discharge data will be analyzed and tested for fitness with observed data and successively used to predict the respective data for different time periods. These are going to be incorporated in the final planning report. The results should assist in preparing a development plan that will be sustainable from the hydrologic point of view. The surveyed cross sections, drainage inventories and list of the road name along the drains will be updated after accumulation and processing of physical feature data.

REFERENCES/BIBLIOGRAPHY

- 1. O'Neill ADJ and Gray DM; <u>Proceedings of Banff Symposium on Role of snow and Ice in Hydrology</u>; 1973.
- 2. Warren Viessman and Garry L. Lewis; <u>Introduction to Hydrology^{ed/4}</u>, Harper Collins (1996).
- 3. Linsley, R. K., M. A. Kohler and J. L. H. Paulhus; <u>Hydrology for engineers^{ed/3}</u>, McGraw-Hill (1982).
- 4. Ven Te Chow, David Maidment, and Larry Hays; <u>Applied Hydrology^{ed/1}</u>, McGraw-Hill (1988).
- 5. VT Chow; Open-Channel Hydraulics, McGraw-Hill, New York (1959)
- 6. Charles T Haan; Statistical Methods in Hydrology, The Iowa State University Press (1977).
- 7. Khaled Hamed, A. Ramachandro. Rao; Flood Frequency Analysis, CRC press.
- 8. Stephan Pauleit, Adrien Coly, Sandra Fohlmeister, Paolo Gasparini, Gertrud Jørgensen, Sigrun Kabisch, Wilbard J. Kombe, Sarah Lindley, Ingo Simonis, Kumelachew Yeshitela; Urban Vulnerability and Climate Change in Africa: A Multidisciplinary Approach, Springer.

ANNEXURE

Annexure-I (a)

Table 1: Cumulative Probability of the Standard Normal Distribution

Cumulative probability of the standard normal distribution

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Source: Grant, E. L., and R. S. Leavenworth, *Statistical Quality and Control*, Table A, p.643, McGraw-Hill, New York, 1972. Used with permission.

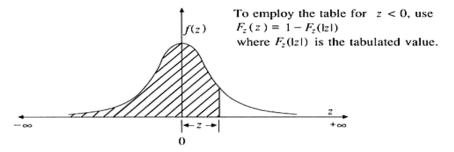


Table 2: Frequency Factors for Pearson Type III Distribution K_T values for Pearson Type III distribution (positive skew)

			Return	period in	years		
Skew	2	5	10 Exceed	25 ence prob	50 ability	100	200
coefficient C_s or C_w	0.50	0.20	0.10	0.04	0.02	0.01	0.005
3.0	-0.396	0.420	1.180	2.278	3.152	4.051	4.970
2.9	-0.390	0.440	1.195	2.277	3.134	4.013	4.909
2.8	-0.384	0.460	1.210	2.275	3.114	3.973	4.847
2.7	-0.376	0.479	1.224	2.272	3.093	3.932	4.783
2.6	-0.368	0.499	1.238	2.267	3.071	3.889	4.718
2.5	-0.360	0.518	1.250	2.262	3.048	3.845	4.652
2.4	-0.351	0.537	1.262	2.256	3.023	3.800	4.584
2.3	-0.341	0.555	1.274	2.248	2.997	3.753	4.515
2.2	-0.330	0.574	1.284	2.240	2.970	3.705	4.444
2.1	-0.319	0.592	1.294	2.230	2.942	3.656	4.372
2.0	-0.307	0.609	1.302	2.219	2.912	3.605	4.298
1.9	-0.294	0.627	1.310	2.207	2.881	3.553	4.223
1.8	-0.282	0.643	1.318	2.193	2.848	3,499	4.147
1.7	-0.268	0.660	1.324	2.179	2.815	3.444	4.069
1.6	-0.254	0.675	1.329	2.163	2.780	3.388	3.990
1.5	-0.240	0.690	1.333	2.146	2.743	3.330	3.910
1.4	-0.225	0.705	1.337	2.128	2.706	3.271	3.828
1.3	-0.210	0.719	1.339	2.108	2.666	3.211	3.745
1.2	-0.195	0.732	1.340	2.087	2.626	3.149	3.661
1.1	-0.180	0.745	1.341	2.066	2.585	3.087	3.575
1.0	-0.164	0.758	1.340	2.043	2.542	3.022	3.489
0.9	-0.148	0.769	1.339	2.018	2.498	2.957	3.401
0.8	-0.132	0.780	1.336	1.993	2.453	2.891	3.312
0.7	-0.116	0.790	1.333	1.967	2.407	2.824	3.223
0.6	-0.099	0.800	1.328	1.939	2.359	2.755	3.132
0.5	-0.083	0.808	1.323	1.910	2.311	2.686	3.041
0.4	-0.066	0.816	1.317	1.880	2.261	2.615	2.949
0.3	-0.050	0.824	1.309	1.849	2.211	2.544	2.856
0.2	-0.033	0.830	1.301	1.818	2.159	2.472	2.763
0.1	-0.017	0.836	1.292	1.785	2.107	2.400	2.670
0.0	0	0.842	1.282	1.751	2.054	2.326	2.576

Table 2: Frequency Factors for Pearson Type III Distribution (Continued...)

K_T values for Pearson Type III distribution (negative skew)

			Return	period in	years		
Skew coefficient	2	5	10 Exceed	25 ence prob	50 ability	100	200
C_s or C_w	0.50	0.20	0.10	0.04	0.02	0.01	0.005
-0.1	0.017	0.846	1.270	1.716	2.000	2.252	2.482
-0.2	0.033	0.850	1.258	1.680	1.945	2.178	2.388
-0.3	0.050	0.853	1.245	1.643	1.890	2.104	2.294
-0.4	0.066	0.855	1.231	1.606	1.834	2.029	2.201
-0.5	0.083	0.856	1.216	1.567	1.777	1.955	2.108
-0.6	0.099	0.857	1.200	1.528	1.720	1.880	2.016
-0.7	0.116	0.857	1.183	1.488	1.663	1.806	1.926
-0.8	0.132	0.856	1.166	1.448	1.606	1.733	1.837
-0.9	0.148	0.854	1.147	1.407	1.549	1.660	1.749
-1.0	0.164	0.852	1.128	1.366	1.492	1.588	1.664
-1.1	0.180	0.848	1.107	1.324	1.435	1.518	1.581
-1.2	0.195	0.844	1.086	1.282	1.379	1.449	1.501
-1.3	0.210	0.838	1.064	1.240	1.324	1.383	1.424
-1.4	0.225	0.832	1.041	1.198	1.270	1.318	1.351
-1.5	0.240	0.825	1.018	1.157	1.217	1.256	1.282
-1.6	0.254	0.817	0.994	1.116	1.166	1.197	1.216
-1.7	0.268	0.808	0.970	1.075	1.116	1.140	1.155
-1.8	0.282	0.799	0.945	1.035	1.069	1.087	1.097
-1.9	0.294	0.788	0.920	0.996	1.023	1.037	1.044
-2.0	0.307	0.777	0.895	0.959	0.980	0.990	0.995
-2.1	0.319	0.765	0.869	0.923	0.939	0.946	0.949
-2.2	0.330	0.752	0.844	0.888	0.900	0.905	0.907
-2.3	0.341	0.739	0.819	0.855	0.864	0.867	0.869
-2.4	0.351	0.725	0.795	0.823	0.830	0.832	0.833
-2.5	0.360	0.711	0.771	0.793	0.798	0.799	0.800
-2.6	0.368	0.696	0.747	0.764	0.768	0.769	0.769
-2.7	0.376	0.681	0.724	0.738	0.740	0.740	0.741
-2.8	0.384	0.666	0.702	0.712	0.714	0.714	0.714
-2.9	0.390	0.651	0.681	0.683	0.689	0.690	0.690
-3.0	0.396	0.636	0.666	0.666	0.666	0.667	0.667

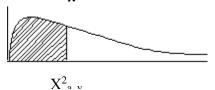

Source: U. S. Water Resources Council (1981).

Table 3: Frequency Factors for Pearson Type III Distribution

Sample	Return Period									
Size (n)	5	10	15	20	25	50	75	100	1000	
15	0.967	1.703	2.117	2.410	2.632	3.321	3.721	4.005	6.265	
20	0.919	1.625	2.023	2.302	2.517	3.179	3.563	3.836	6.006	
25	0.888	1.575	1.963	2.235	2.444	3.088	3.463	3.729	5.842	
30	0.866	1.541	1.922	2.188	2.393	3.026	3.393	3.653	5.727	
35	0.851	1.516	1.891	2.152	2.354	2.979	3.341	3.598		
40	0.838	1.495	1.866	2.126	2.326	2.943	3.301	3.554	5.576	
45	0.829	1.478	1.847	2.104	2.303	2.913	3.268	3.520		
50	0.820	1.466	1.831	2.086	2.283	2.889	3.241	3.491	5.478	
55	0.813	1.455	1.818	2.071	2.267	2.869	3.219	3.467		
60	0.807	1.446	1.806	2.059	2.253	2.852	3.200	3.446		
65	0.801	1.437	1.796	2.048	2.241	2.837	3.183	3.429		
70	0.797	1.430	1.788	2.038	2.230	2.824	3.169	3.413	5.359	
75	0.972	1.423	1.780	2.029	2.220	2.812	3.155	3.400		
80	0.788	1.417	1.773	2.020	2.212	2.802	3.145	3.387		
85	0.785	1.413	1.767	2.013	2.205	2.793	3.135	3.376		
90	0.782	1.409	1.762	2.007	2.198	2.785	3.125	3.367		
95	0.780	1.405	1.757	2.002	2.193	2.777	3.116	3.357		
100	0.779	1.401	1.752	1.998	2.187	2.770	3.109	3.349	5.261	
α	0.719	1.305	1.635	1.866	2.044	2.592	2.911	3.137	4.936	

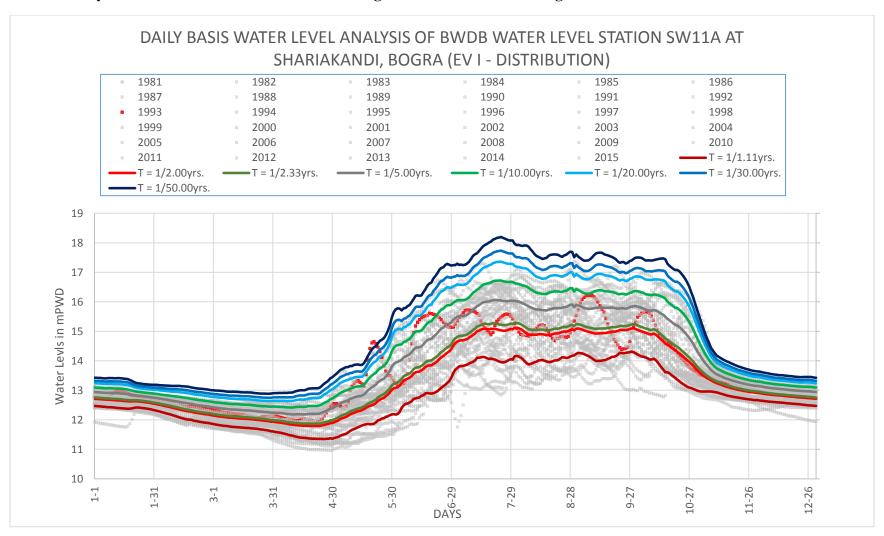
Source: Journal American Statistical Association 47:425-441, 1952.Z.W. Birnbaum

Table 4: χ^2 Distribution

DOF v	$x_{.995}^2$	x _{.99}	$x_{.975}^2$	$x_{.95}^2$	x _{.90}	x _{.75}	$x_{.50}^2$	$x_{.25}^2$	$x_{.10}^2$	$x_{.05}^2$	$x_{.025}^2$	$x_{.01}^2$	$x_{.005}^2$
1	7.88	6.63	5.02	3.84	2.71	1.32	0.455	0.102	0.0158	0.0039	0.0010	0.0002	0.0000
2	10.6	9.21	7.38	5.99	4.61	2.77	1.39	0.575	.211	.103	.0506	.0201	.0100
3	12.8	11.3	9.35	7.81	6.25	4.11	2.37	1.21	.584	.352	.216	.115	.072

DOF	x ²	x ²	x ²	₂ ,2	₂ ,2	x ²	x ²	2.2	x ²	x ²	x ²	»2	x ²
ν	A.995	<i>A</i> .99	X.975	$x_{.95}^2$	$x_{.90}^2$	$x_{.75}^2$	$x_{.50}^2$	$x_{.25}^2$	$x_{.10}^2$	$\lambda_{.05}$	$x_{.025}^2$	$x_{.01}^2$	$x_{.005}^2$
4	14.9	13.3	11.1	9.49	7.78	5.39	3.36	1.92	1.06	.711	.484	.297	.207
-	14.9	13.3	11.1	2.42	7.76	3.39	3.30	1.92	1.00	./11	.404	.291	.207
5	16.7	15.1	12.8	11.1	9.24	6.63	4.35	2.67	1.61	1.15	.831	.554	.412
6	18.5	16.8	14.4	12.6	10.6	7.84	5.35	3.45	2.20	1.64	1.24	.872	.676
7	20.3	18.5	16.0	14.1	12.0	9.04	6.35	4.25	2.83	2.17	1.69	1.24	.989
8	22.0	20.1	17.5	15.5	13.4	10.2	7.34	5.07	3.49	2.77	2.18	1.65	1.34
9	23.6	21.7	19.0	16.9	14.7	11.4	8.34	5.90	4.17	3.33	2.70	2.09	1.73
,	23.0	21.7	19.0	10.9	14.7	11.4	0.54	3.90	4.17	3.33	2.70	2.09	1.73
10	25.2	23.2	20.5	18.3	16.0	12.5	9.34	6.74	4.87	3.94	3.25	2.56	2.16
11	26.8	24.7	21.9	19.7	17.3	13.7	10.3	7.58	5.58	4.57	3.82	3.05	2.60
12	28.3	26.2	23.3	21.0	18.5	14.8	11.3	8.44	6.30	5.23	4.40	3.57	3.07
13	29.8	27.7	24.7	22.4	19.8	16.0	12.3	9.30	7.04	5.89	5.01	4.11	3.57
14	31.3	29.1	26.1	23.7	21.1	17.1	13.3	10.2	7.79	6.57	5.63	4.66	4.07
17	31.3	27.1	20.1	23.1	21.1	1/.1	13.3	10.2	1.13	0.51	2.03	7.00	7.07
15	32.8	30.6	27.5	25.0	22.3	18.2	14.3	11.0	8.55	7.26	6.26	5.23	4.60
16	34.3	32.0	28.8	26.3	23.5	19.4	15.3	11.9	9.31	7.96	6.91	5.81	5.14
17	35.7	33.4	30.2	27.6	24.8	20.5	16.3	12.8	10.1	8.67	7.56	6.41	5.70
18	37.2	34.8	31.5	28.9	26.0	21.6	17.3	13.7	10.9	9.39	8.23	7.01	6.26
19	38.6	36.2	32.9	30.1	27.2	22.7	18.3	14.6	11.7	10.1	8.91	7.63	6.84
17	30.0	30.2	32.7	30.1	27.2	22.7	10.0	11.0	11.,	10.1	0.71	7.05	0.01
20	40.0	37.6	34.2	31.4	28.4	23.8	19.3	15.5	12.4	10.9	9.59	8.26	7.43
21	41.4	38.9	35.5	32.7	29.6	24.9	20.3	16.3	13.2	11.6	10.3	8.90	8.03
22	42.8	40.3	36.8	33.9	30.8	26.0	21.3	17.2	14.0	12.3	11.0	9.54	8.64
23	44.2	41.6	38.1	35.2	32.0	27.1	22.3	18.1	14.8	13.1	11.7	10.2	9.26
24	45.6	43.0	39.4	36.4	33.2	28.2	23.3	19.0	15.7	13.8	12.4	10.9	9.89
					00.2	20.2	20.0	17.0	10.7	10.0	12	10.5	7.07
25	46.9	44.3	40.6	37.7	34.4	29.3	24.3	19.9	16.5	14.6	13.1	11.5	10.5
26	48.3	45.6	41.9	38.9	35.6	30.4	25.3	20.8	17.3	15.4	13.8	12.2	11.2
27	49.6	47.0	43.2	40.1	36.7	31.5	26.3	21.7	18.1	16.2	14.6	12.9	11.8
28	51.0	48.3	44.5	41.3	37.9	32.6	27.3	22.7	18.9	16.9	15.3	13.6	12.5
29	52.3	49.6	45.7	42.6	39.1	33.7	28.3	23.6	19.8	17.7	16.0	14.3	13.1
													-
30	53.7	50.9	47.0	43.8	40.3	34.8	29.3	24.5	20.6	18.5	16.8	15.0	13.8
40	66.8	63.7	59.3	55.8	51.8	45.6	39.3	33.7	29.1	26.5	24.4	22.2	20.7
50	79.5	76.2	71.4	67.5	63.2	56.3	49.3	42.9	37.7	34.8	32.4	29.7	28.0
60	92.0	88.4	83.3	79.1	74.4	67.0	59.3	52.3	46.5	43.2	40.5	37.5	35.5
										-			
70	104.2	100.4	95.0	90.5	85.5	77.6	69.3	61.7	55.3	51.7	48.8	45.4	43.3
80	116.3	112.3	106.6	101.9	96.6	88.1	79.3	71.1	64.3	60.4	57.2	53.5	51.2
90	128.3	124.1	118.1	113.1	107.6	98.6	89.3	80.6	73.3	69.1	65.6	61.8	59.2
100	140.2	135.8	129.6	124.3	118.5	109.1	99.3	90.1	82.4	77.9	74.2	70.1	67.3

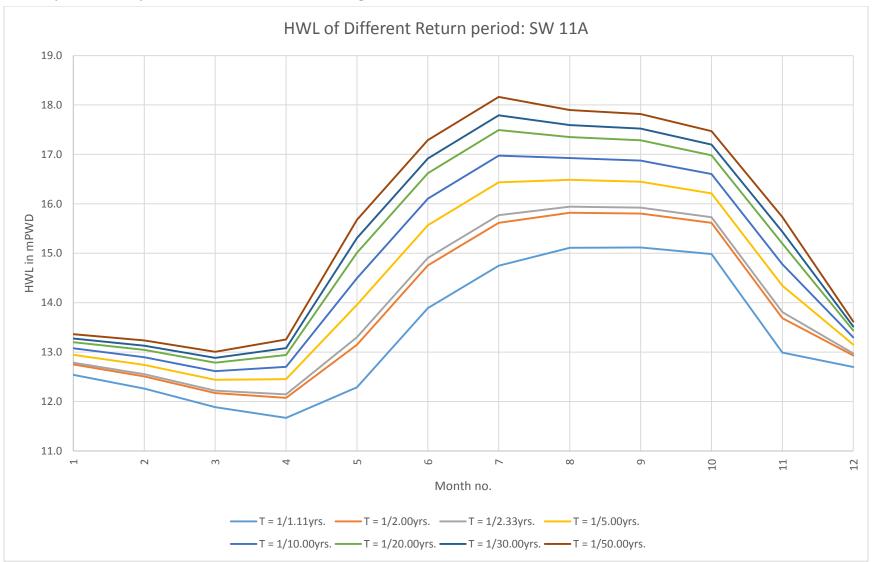
Source: Catherine M. Thompson, Table of percentage points of the χ^2 distribution, Biometrika, Vol. 32 (1941), by permission of the author and publisher

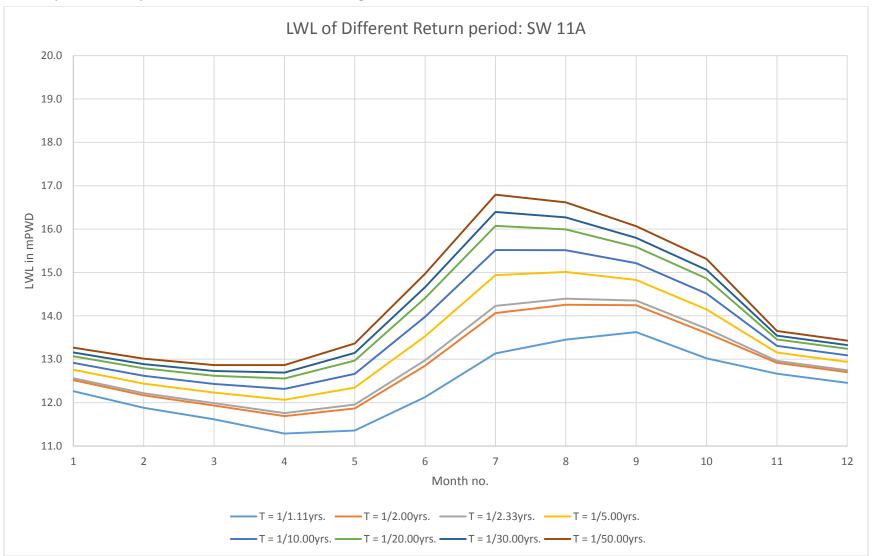

Table 5: Kolmogorov-Smirnov Distribution

Sample Size (n)		Significance Level									
	.20	0.15	0.10	0.05	0.01						
1	.900	.925	.950	.975	.995						
2	.684	.726	.776	.842	.929						
3	.565	.597	.642	.708	.829						
4	.494	.725	.564	.624	.734						
5	.446	.474	.510	.563	.669						
6	.410	.436	.470	.521	.618						
7	.381	.405	.438	.486	.577						
8	.358	.381	.411	.457	.543						
9	.339	.360	.388	.432	.514						
10	.322	.342	.368	.409	.486						
11	.307	.326	.352	.391	.468						
12	.295	.313	.338	.375	.450						
13	.284	.302	.325	.361	.433						
14	.274	.302	.314	.349	.418						
			.304								
15	.266	.283	.304	.338	.404						
16	.258	.274	.295	.328	.391						
17	.250	.266	.286	.318	.380						
18	.244	.259	.278	.309	.370						
19	.237	.252	.272	.301	.361						
20	.231	.246	.264	.294	.352						
25	.21	.22	.24	.264	.32						
30	.19	.20	.22	.242	.29						
35	.18	.19	.21	.23	.27						
40	.10	.17	.21	.21	.25						
50				.19	.23						
30				.17	.23						
60				.17	.21						
70				.16	.19						
80				.15	.18						
90				.14							
100				.14							
Asymptotic Formula	1.70	1.14	1.22	1.36	1.63						
Asymptone Pormula	$\overline{\sqrt{n}}$	$\overline{\sqrt{n}}$	\sqrt{n}	\sqrt{n}	$\overline{\sqrt{n}}$						

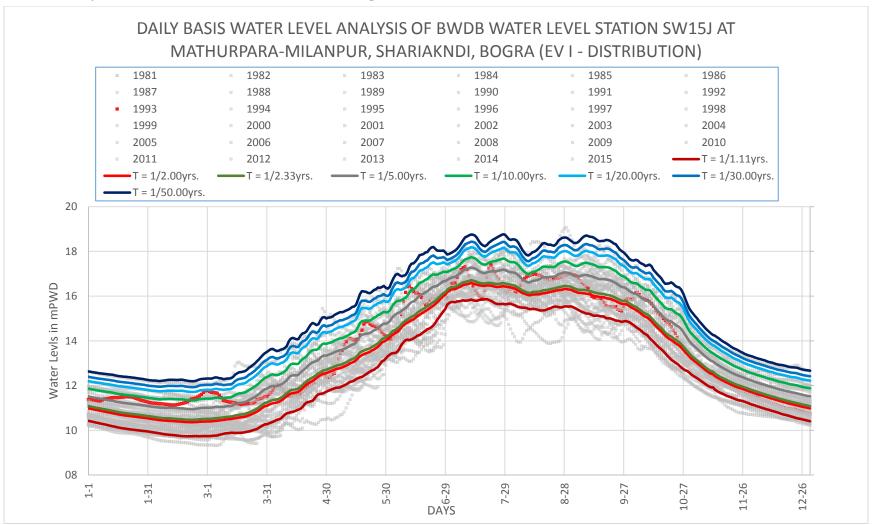
Source: Journal American Statistical Association 47:425-441, 1952.Z.W. Birnbaum

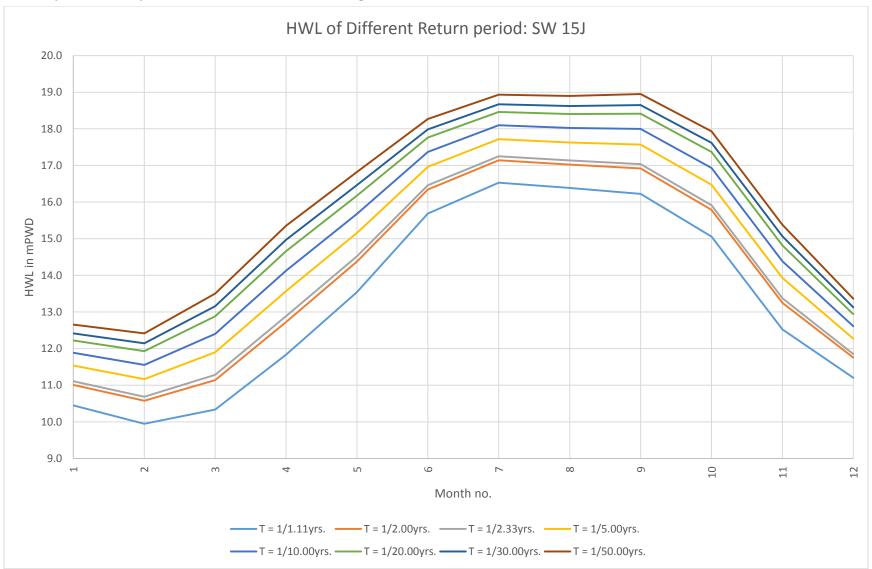
Annexure-I (b)

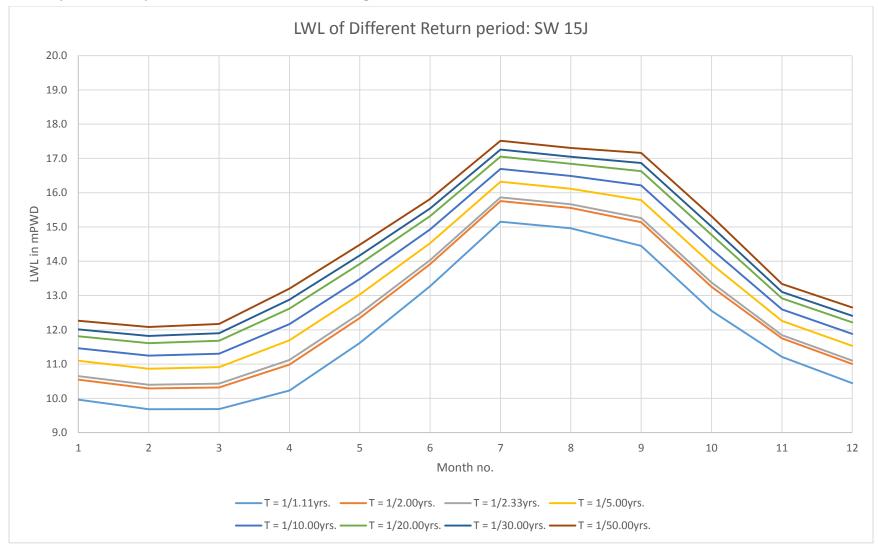

A.1b.1: Analyzed Results of BWDB Water Level Gauge Station SW 11A on Bangali River


Monthly Basis Analysis of Data of Water Level Gauge Station SW 11A

Monthly Data		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
WL	Year					Monthl	y Maxii	mum W	L (mPW	/D)								Monthl	y Minim	ım WL (ı	mPWD)				
	1981	12.91	12.83	12.65	12.85	14.73	15.21	15.96	16.03	15.96	15.00	13.34	13.03	12.80	12.65	12.53	12.48	12.82	13.10	13.36	15.15	15.05	13.36	12.95	12.89
	1982	12.89	12.76	12.59	12.65	12.56	14.81	15.57	15.71	15.53	15.29	13.47	13.08	12.76	12.57	12.45	12.36	12.44	12.49	14.32	14.49	14.18	13.48	13.09	12.89
	1983	12.88	12.77	12.55	12.45	14.02	13.83	15.24	15.77	16.13	16.31	15.01	13.33	12.77	12.56	12.46	12.25	12.36	13.20	13.88	14.38	14.96	15.18	13.34	13.13
	1984 1985	13.18	13.09	12.84	12.59	14.60	16.42 14.30	16.92	16.93	17.22	16.17	13.79 14.62	13.19	13.09	12.86	12.60	12.35	12.45	14.53	15.71	14.93	15.10	13.83 14.04	13.20	13.08
	1986	13.07	12.87	12.45	12.59 12.50	12.99	14.19	16.40 15.75	16.51 15.64	15.88 15.89	15.36 16.25	14.62	13.26 13.42	12.88	12.62 12.45	12.46 12.23	12.31 12.22	12.53 12.45	13.00	13.93 14.46	14.89 14.25	15.09 14.60	14.04	13.28 13.43	13.00 13.14
	1987	13.12	12.86	12.58	12.43	13.16	14.49	16.88	17.12	16.17	15.98	14.36	13.25	12.87	12.54	12.44	12.26	12.62	12.77	14.76	16.22	15.76	14.29	13.25	12.96
	1988	12.96	12.74	12.43	12.44	14.03	16.04	16.46	17.35	17.35	14.81	13.29	13.21	12.75	12.45	12.34	12.16	12.47	13.24	15.73	15.27	14.75	13.34	12.90	12.81
	1989	12.81	12.64	12.33	12.04	14.74	15.25	16.33	16.01	15.61	15.82	13.66	13.19	12.65	12.34	12.04	11.70	11.69	14.16	14.20	13.98	14.08	13.70	13.20	12.96
	1990	12.95	12.76	12.50	12.40	14.10	15.60	16.47	16.43	15.88	16.64	14.66	13.26	12.77	12.51	12.27	12.23	12.30	14.30	15.09	15.07	14.74	14.88	13.27	13.01
	1991 1992	13.01	12.83	12.43 12.55	12.13	14.83	16.73 12.94	17.30 15.32	16.52 15.01	16.79 15.30	16.38 16.02	13.65 13.64	13.16 12.99	12.84 12.85	12.45 12.57	12.14 12.28	11.86 11.85	11.88 11.89	14.01 12.30	15.52 13.18	15.44 13.68	15.47 13.81	13.69 13.71	13.17 13.02	13.01 12.77
	1993	13.00	12.68	12.33	12.44	14.65	15.61	15.73	15.35	16.22	15.66	13.60	12.98	12.69	12.34	12.07	11.94	12.38	13.19	14.89	14.68	14.39	13.64	12.99	12.72
	1994	12.72	12.45	12.12	11.88	12.72	14.10	14.24	14.08	13.93	14.50	13.14	12.71	12.45	12.13	11.88	11.73	11.76	12.81	13.06	13.20	13.22	13.15	12.72	12.53
	1995	12.53	12.31	11.93	11.77	11.58	13.08	14.36	16.56	16.49	16.99	13.75	13.20	12.32	11.94	11.77	11.20	11.20	11.60	11.75	14.89	14.18	13.82	13.22	12.88
	1996 1997	12.87 12.52	12.59 12.26	12.17 11.97	11.82	12.83 11.66	14.01 13.89	16.58 15.90	16.01 15.39	15.85 15.47	15.55 15.35	14.04 12.92	12.75	12.60 12.27	12.19 11.98	11.82 11.80	11.53 11.39	11.79 11.48	12.63 11.69	14.24 13.54	14.46 13.81	14.07 14.54	13.25 12.92	12.77 12.61	12.53 12.49
	1998	12.52	12.20	11.94	11.76	13.44	14.57	16.63	16.60	16.60	15.97	15.81	12.60 12.93	12.38	11.95	11.81	11.58	11.46	12.81	14.49	16.30	14.54	13.41	12.95	12.49
	1999	12.53	12.19	11.87	11.50	13.32	16.37	16.77	17.07	16.95	15.58	14.39	12.51	12.20	11.87	11.53	11.30	11.27	12.45	16.15	15.36	15.58	14.58	12.54	11.94
	2000	12.61	12.53	12.17	12.53	14.46	15.52	15.52	15.39	15.35	14.72	12.95	12.61	11.76	12.13	11.99	11.80	12.47	14.51	13.77	14.00	14.35	12.99	12.62	12.43
	2001	12.42	12.18	11.75	11.32	12.52	14.65	13.62	14.49	15.59	16.19	13.89	12.99	12.21	11.77	11.35	10.96	10.97	12.65	13.04	13.34	14.26	14.04	13.02	12.63
	2002	12.63 12.97	12.45 12.44	12.06 12.13	12.74 12.79	13.65 13.15	16.05 15.47	16.68 16.37	16.82 15.42	15.80 14.41	16.03 15.94	13.58 14.31	13.17	12.46 12.45	12.06 12.15	11.94 12.00	11.94 12.17	12.70	12.97 12.91	15.97 15.48	15.46 14.22	13.79 13.64	13.60 14.16	13.19 13.07	12.99 12.74
	2003	12.74	12.54	12.13	12.79	13.15	15.67	16.65	16.20	15.19	16.65	14.27	13.04 12.71	12.45	12.15	11.71	11.63	12.77 12.26	13.56	15.45	13.66	14.10	14.10	12.73	12.74
	2005	12.42	12.15	11.86	12.00	13.16	15.32	16.48	15.96	15.93	16.67	15.77	13.12	12.18	11.72	11.68	11.00	11.95	13.02	13.91	14.66	13.83	14.76	13.15	12.79
	2006	12.78	12.48	12.23	12.14		15.31	15.20	15.09	15.60	15.41	13.72	13.18	12.48	12.23	11.91	11.76	12.13	14.10	14.22	13.61	13.55	13.75	13.20	13.01
	2007	13.01	12.74	12.66	12.30	12.88	15.67	15.60	16.53	16.58	14.75	13.45	12.98	12.76	12.55	12.31	11.86	11.88	12.81	13.50	14.75	14.46	13.48	13.00	12.87
	2008	12.87	12.66 11.84	12.32	12.10 11.56	13.11 13.30	15.29 13.97	16.02 13.70	15.92 16.42	16.12 16.27	14.42 15.50	13.16 13.35	12.79 12.89	12.67	12.30 11.80	12.13 11.59	11.71	11.62 11.18	13.01 12.65	14.44 12.85	15.01 14.03	14.42 13.75	13.15 13.38	12.79 12.93	12.72 12.75
	2010	12.74	12.63	12.27	11.83	13.58	14.97	15.70	15.73	15.59	14.72	13.22	12.75	12.64	12.30	11.84	11.17	11.10	13.25	14.09	13.24	14.30	13.26	12.93	12.75
	2011	12.61	12.32	11.88	11.62	13.11	13.80	15.00	16.17	15.87	15.81	13.24	12.78	12.36	11.88	11.58	11.28	11.27	12.68	14.15	14.37	13.68	13.27	12.78	12.67
	2012	12.67	12.52	11.79	11.40	11.51	14.85	15.77	15.35	16.70	16.50	13.43	12.92	12.54	11.84	11.42	11.18	11.19	11.52	14.23	13.45	13.86	13.50	12.93	12.79
	2013	12.79	12.65	12.11	11.83	12.35	14.50	15.06	14.70	14.57	15.27	13.33	12.57	12.66	12.13	11.87	11.27	11.39	12.27	13.45	13.22	13.01	12.78	12.58	12.40
	2014	12.39 12.56	12.18 12.43	11.86 11.99	11.55 12.42	11.95 13.27	14.22 15.00	14.30 15.60	15.82 15.91	16.21 16.35	16.23 16.02	13.03 12.83	12.57	12.21 12.45	11.81 11.88	11.57 11.79	11.11 11.79	11.11 12.27	11.80 13.39	13.30 13.85	13.05 13.35	13.90 15.38	13.07 12.85	12.62 12.31	12.32
	2015	12.30	12.43	11.33	12.42	13.21	15.00	15.00	15.51	10.33	10.02	12.03	12.31	12.40	11.00	11.73	11.73	12.21	13.33	13.03	13.33	13.30	12.05	12.31	12.32
	MAX	13.18	13.09	12.84	12.85	14.83	16.73	17.30	17.35	17.35	16.99	15.81	13.42	13.09	12.86	12.60	12.48	12.82	14.53	16.15	16.30	15.76	15.18	13.43	13.14
	MIN	12.39	11.84	11.75	11.32	11.51	12.94	13.62	14.08	13.93	14.42	12.83	12.51	11.76	11.72	11.35	10.96	10.97	11.52	11.75	13.05	13.01	12.78	12.31	11.94
	N	34	35	35	34	35	35	35	35	35	35	35	34	34	35	35	34	35	35	35	35	35	35	35	34
	AVE.	12.79	12.55 00.26	12.22	12.14	13.30 00.92	14.91 00.92	15.77 00.92	15.94 00.75	15.92 00.73	15.73 00.67	13.81 00.74	12.97 00.25	12.56 00.27	12.22 00.31	11.99 00.34	11.76 00.43	11.95 00.54	12.98	14.23	14.40	14.35 00.66	13.70 00.62	12.96 00.27	12.75 00.26
	0	00.22	00.20	00.50	00.43	00.32	00.32	00.32	00.75	00.73	00.07	00.74	00.23	00.21	00.51	00.34	00.43	00.54	00.11	00.33	00.00	00.00	00.02	00.21	00.20
ANALYSED DATA:																									
T = 1/1.11yrs. K _{1.11}	= -1.10	12.54	12.26	11.89	11.67	12.29	13.89	14.75	15.11	15.12	14.99	12.99	12.70	12.26	11.88	11.62	11.29	11.36	12.13	13.13	13.45	13.62	13.02	12.67	12.46
T = 1/2.00yrs. K _{2.00}	= -0.16	12.75	12.51	12.17	12.07	13.15	14.75	15.62	15.82	15.80	15.62	13.69	12.93	12.52	12.17	11.93	11.69	11.87	12.85	14.06	14.26	14.24	13.60	12.92	12.70
T = 1/2.33yrs. K _{2.33}	= 0.00	12.79	12.55	12.22	12.14	13.30	14.91	15.77	15.94	15.92	15.73	13.81	12.97	12.56	12.22	11.99	11.76	11.96	12.98	14.23	14.40	14.35	13.70	12.96	12.75
T = 1/5.00yrs. K _{5.00}	= 0.72	12.95	12.74	12.44	12.45	13.96	15.57	16.43	16.49	16.45	16.21	14.34	13.15	12.76	12.44	12.23	12.06	12.35	13.53	14.94	15.01	14.83	14.15	13.15	12.94
T = 1/10.00yrs. K _{10.00}	= 1.30	13.08	12.90	12.62	12.70	14.50	16.10	16.97	16.93	16.88	16.60	14.78	13.30	12.92	12.62	12.43	12.31	12.66	13.98	15.52	15.51	15.21	14.51	13.31	13.09
T = 1/20.00yrs. K _{20.00}	= 1.87	13.20	13.05	12.79	12.94	15.01	16.62	17.49	17.35	17.29	16.98	15.19	13.44	13.07	12.79	12.62	12.55	12.97	14.41	16.07	15.99	15.59	14.86	13.46	13.24
T = 1/30.00yrs. K _{30.00}	= 2.19	13.27	13.13	12.88	13.08	15.31	16.92	17.79	17.59	17.52	17.20	15.43	13.52	13.16	12.89	12.73	12.69	13.14	14.66	16.39	16.27	15.80	15.06	13.54	13.32
T = 1/50.00yrs. K _{50.00}	= 2.59	13.36	13.24	13.01	13.25	15.68	17.29	18.16	17.90	17.82	17.47	15.73	13.62	13.27	13.01	12.86	12.86	13.36	14.97	16.79	16.62	16.07	15.31	13.65	13.43


Monthly Basis Analysis of Data of Water Level Gauge Station SW 11A


Monthly Basis Analysis of Data of Water Level Gauge Station SW 11A


A.1b.2: Analyzed Results of BWDB Water Level Gauge Station SW 15J on the Jamuna River

Monthly Basis Analysis of Data of Water Level Gauge Station SW 15J

Monthly Basis Analysis of Data of Water Level Gauge Station SW 15J

Annexure-II: Instructions to Surveyors

Information to Be Collected During Bathymetric Survey and Physical Feature Survey:

- During survey works, information regarding water levels should be collected. Information should include: a. Notable highest flood level (HFL) and lowest flood level (LFL) in the past. (ASK LOCALS) b. Notable Highest tide level (HTL) and lowest tide level (LTL) in the past. (ASK LOCALS) c. Present water level (PWL) during survey at the point of surveyed section should be measured.
- 2. Cross-sections should be collected at entry and exit of a bends of rivers, at centers of riffles of rivers at junctions with tributaries and distributaries and mouths of rivers, near locations of water level gauges and at locations of hydraulic structures.
- 3. GPS location of the surveyed section should be collected.
- 4. Local names of the rivers being surveyed and their tributaries (If any) should be collected. (ASK LOCALS)
- 5. Information regarding hydraulic structures has to be collected consulting with the government agencies likes BWDB, BADC, LGED and RHD. Information should include: a. Sill level of regulators, rubber dams, weirs and culverts. b. Opening of the structures. c. Storage level of water retention structures and dams. d. Information of the projects that funded the construction of the structures if possible to collect.
- 6. Consulting with the local people, information regarding flash flood has to be collected. Information should include: a. Number of incident(s) of flash flood in a year. b. Probable time(s) of flash flood(s) to occur. c. Duration(s) of flash flood(s). d. Areas that are more prone to damage inflicted by flash flood.
- 7. Information regarding water logging should be collected. Local people should be consulted in this regard. Information should include: a. Name of the areas experiencing frequent water logging problems. b. Duration of water logging. c. Local idea about cause of water logging.
- 8. Information regarding drains should include: a. Size of drains: (Depth X Width) b. RL of drains at different locations.
 - 1. c. Construction type of drains: i. Lined / Unlined ii. Man-made / Natural d. Method of connection of households to the drains. e. Location of different point of the drains: i. Starting points ii. Junction points iii. End points f. Name of roads alongside the drains, ward no. / name of village. g. Use of drains: i. Sewer ii. Storm-sewer iii. Mixed
 - 9. Information regarding encroachment of drains and natural channels should be collected.

Table A2.1: Dumpy Level Reading Sheet

Ch.	Distar	nce (m)	Staff Reading			Height of Instrument	RL	Remarks
(m)	(m)	(m)	BR (m)	IS (m)	FR (m)	(m)	(m)	

Table A2.2: Drainage Inventory

Upazila	Ward no.	By road	Reach	GI loca		R) (mP)		Reach Length	Depth	Width	Type
				Start	End	Start	End	(m)	(mm)	(mm)	

Annexure-III: Comments and Corrections of TMC Meeting Dated on 07.06.2017

Serial No.	Comments from TMC Members	Corrections Done by the Consultant of MEPC (Package-4)
1	In TMC meeting, an honorable TMC member raised a question about cross section either completed or postponed according to <i>Section 3.1: Survey of Main Rivers</i> of Hydrological Report for Sariakandi Upazila.	in Page no 7 of the report. It also has been replaced the <i>Table of</i>