'Preparation of Development Plan for Fourteen Upazilas' Package-2

Presentation on

Geological Works at
Ishwarganj, Raipura and Shibpur Upazila
(Draft Survey Report)

Presented by
Mohammed Jamal Uddin,
Consultant Geologist
\&
Fansab Mustahid
Associate Consultant Geologist

bjectives

To ensure the sustainable development, the prime objectives of this work is to determine subsurface soil condition of the project area and evaluating of natural geological and hydro-meteorological hazards such as earthquake, landslide and ground failure and integrate the consequence into the design of risk sensitive landuse planning.

ield activities and ub-surface restigations

- Geomorphologic field study
- Drilling of boreholes and preparation of borehole logs;
- Collection of undisturbed and disturbed soil sample as per standard guide line;
- Conducting standard penetration tests (SPTs);
- Drilling of boreholes and casing by PVC pipe for conducting PS logging test
- Conducting Down-hole Seismic Test (PS Logging) and
- Conducting Multi-Channel Analysis of Surface Wave (MASW).

Test Number

Upazila Name	Borehole (SPT)	Downhole Seismic Test (PS Logging)	MASW Test
Raipura	12	3	5
Shibpur	20	3	5
Ishwarganj	30	4	5

Drilling Locations for SPT Tes \dagger

PS Logging and MASW Test Locations

PS logging Data Acquisitions at Raipura Upazila

PS logging Data Acquisitions at Ishwarganj Upazila

BH-03, Near Maijbagh Union Porishod, Maijbagh Union

BH-20, ChorNiclauchhoBiddaloy. IshwarganiSadar.

PS logging Data Acquisitions at Shibpur Upazila

BH-11, Shibpur ideal school and college, ShibpurSadar

BH-04, Near Dulalpur Union porishod, Dulalpur Union

Down-Hole Seismic (PS Logging) Test Result

-Down-Hole Seismic (PS Logging) Test data acquisition has been completed at three Upazilla in different locations on date $26{ }^{\text {th }}$ August 2016.

- Depth of observations was up to 30 meter for each hole
-Field raw data is being processed and interpreted to provide sub-surface info respect to seismic activity in the project area.

MASW Survey at Raipura

MASW-Rai 4, Raipura College, RolastoliU Union

MASW-Ra 5 , Picikkandihtogh School, MVrzapur Union

MASW Survey Result at Raipura Upazila

Summary of MASW Test Results of Raipura

MASW ID	Average Shear Wave Velocity (Vs 30)
MASW Rai 1	$163.0 \mathrm{~m} / \mathrm{s}$
MASW Rai 2	$172.7 \mathrm{~m} / \mathrm{s}$
MASW Rai 3	$159.8 \mathrm{~m} / \mathrm{s}$
MASW Rai 4	$155.2 \mathrm{~m} / \mathrm{s}$
MASW Rai 5	$162.9 \mathrm{~m} / \mathrm{s}$

Source: Field survey, 201
DAccording to MASW test result, the average shear wave velocities at all location are less than $180 \mathrm{~m} / \mathrm{s}$.

UShear wave velocity of the project area is showing soft to moderate soil condition for foundation.

The shear wave velocities at soil layer shows gradually increase from $110 \mathrm{~m} / \mathrm{s}$ to $230 \mathrm{~m} / \mathrm{s}$.

F From those soil velocities, it can be saying the upper soils (depth around 15 m) are soft soil and soil hardness gradually increases by increasing depth.

MASW Survey Result at Shibpur Upazila

Summary of MASW Test Results of Shibpur

MASW ID	Average Shear Wave Velocity (Vs 30)
MASW Shib 1	$188.9 \mathrm{~m} / \mathrm{s}$
MASW Shib 2	$170.9 \mathrm{~m} / \mathrm{s}$
MASW Shib 3	$178.4 \mathrm{~m} / \mathrm{s}$
MASW Shib 4	$190.3 \mathrm{~m} / \mathrm{s}$
MASW Shib 5	$205.3 \mathrm{~m} / \mathrm{s}$

Source:: Field survey, 201
\square According to MASW test result, shear wave velocity of the project area is showing soft to moderate soil condition for foundation.
-MASW-01, MASW-04 and MASW -05 test results are showing more than $180 \mathrm{~m} / \mathrm{s}$ but others two locations the average velocity is bellow $180 \mathrm{~m} / \mathrm{s}$.

The shear wave velocities at soil layer shows gradually increase from $110 \mathrm{~m} / \mathrm{s}$ to $230 \mathrm{~m} / \mathrm{s}$.
\square From those soil velocities, it can be saying the upper soils (depth around 15 m) are soft soil and soil strength gradually increases by increasing depth.

MASW Survey Result at Ishwarganj Upazila

S-wave veloçity cross-section

Summary of MASW Test Results of Ishwarganj

MASW ID	Average Shear Wave Velocity $($ Vs 30)
MASW Shib 1	$207.1 \mathrm{~m} / \mathrm{s}$

Source: Field survey, 201
DAccording to MASW test result, average shear wave velocity at all locations are above $180 \mathrm{~m} / \mathrm{s}$.
\square From those shear wave velocity, it can be saying, the project area is showing moderate soil condition for foundation.

The shear wave velocities at soil layer shows gradually increase from $110 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$.

DFrom those soil velocities, it can be saying the upper soils (depth around 15 m) are soft soil and soil hardness gradually increases by increasing depth.

- For geotechnical investigations, 30, 12 and 20 boreholes has been conducted at Ishwarganj, Raipura and Shibpur Upazila respectively
- The borings with SPT were carried out at all numbers of borehole in the respective Upazilas.
- Undisturbed samples and disturbed soil sample has been collected for further lab test. All samples are clearly labeled to show the project name, date, location, borehole number, depth and method of sampling; in addition, each sample should be given a serial number. Special care has been taken in the handling, transportation and storage of samples (particularly undisturbed samples) prior to testing.
- Investigation borings with standard penetration test were conducted in order to know vertical geological conditions.

tandard enetration esting

Preparing borehole for Standard Penetration Test

Blowing with hammer for calculating Standard Penetration resistance

Drilling in the borehole

Soil sample in split spoon

Engineering Geotechnical Logs

xpected utoomes from the study

- Preparation of geological and geomorphologic map preparation of the study area from satellite image .
- Regional morph-tectonic and neo-tectonic mapping for potential earthquake source area identification.
- Preparation of sub-surface litho-logical 3D model of different layers through geo- technical investigation
- Foundation layer map which showing the depth of the foundation from existing ground level for footing.
- Preparation of engineering geological mapping based on AVS30
- Preparation of Seismic Hazard Assessment Map
- Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) map.
- Recommended building height maps for both high rise building and low rise building
- Finally intensity map is prepared for high rise and low rise building

ondusion

\square All kind of field survey data(geological, geotechnical and geophysical) acquisition has been completed.

The above mention data would give a clear idea about the geo-hazard status of particular landscape where newly urban developing activities or any other mega infrastructure project is going on and this mentioned investigation also gives idea about the vulnerability of existing build up infrastructure of a particular area.

Based on these results, proper management techniques as well as other necessary adaptation process could be addressed before or after the development activities in the studied area. It is to be mentioned that the long-term maintenance cost will be reduced and the developed structure will withstand against the potential natural hazards if the infrastructures are built following the risk informed physical land-use plan.

Some example of

Final outcomes

Geomorphology map

Preparation of geomorphologic -al maps using satellite images, borehole information and DEM

-Valleys

- Depositional flat valley
- Wide valley
- Narrow valley
-Slopes
- Gentle slope(0-15ํ)
- Moderate slope(15은 25응
-Hillocks
- Hillock with flat top
- Hillock with narrow top
- Steep slope(>25ㅇ)

Engineering Geology Map

5

Raddish brown soft CLAY -L 1
Raddish brown stiff to hard SILT and silty clay -L 2
Raddish brown Loose to medium dense SAND with silt -L 3
Yellowish brown soft CLAY with silt -L 4
Yellowish brown stiff SILT with clay $-\mathrm{L}_{5}$ \square Yellowish brown loose SAND -L 6
Raddish brown dense to very dense SAND - L_{7}
Yellowish brown dense to very dense SAND - L 8 \square Gray loose to medium dense SAND -L 11

Gray soft CLAY with trace silt -L 9
Gray stiff Silt with clay -L 10

Engineering geological mapping based on AVS30

Soil Type

Ground Class	$\mathrm{V}_{\mathrm{s} 30}$	Soil Type	Relative Quality
C	$360-760 \mathrm{~m} / \mathrm{sec}$	Very Dense/ Hard Soil and Soft rock	Very Good Soil
D1	$300-360 \mathrm{~m} / \mathrm{sec}$	Stiff / Dense to very dense/Hard Soil	Moderately good soil
D2	$250-300 \mathrm{~m} / \mathrm{sec}$	Stiff / Dense Soil	Relatively Good soil
D3	$220-250 \mathrm{~m} / \mathrm{sec}$	Medium Stiff / Medium Dense Soil	Good soil 28

Foundation laver map

- Green shaded area represents zone suitable for shallow foundation to a depth of 03 meters whereas red shaded area indicates places not suitable for shallow foundation zone.
- Usually, valley areas were found to be not suitable for shallow foundation whereas the hill tops were found to be suitable for shallow foundation.

Building Heights

Seismic Hazard Map (Return Period 475 Years)

Peak Ground Acceleration at Ground surface

Soil Type Map

Ground Classification Applied in this Study

Class	Vs30	Site Class
C	360-760 m/sec	Very dense Soil
D1	300-360 m/sec	
D2	250-300 m/sec	
D3	220-250 m/sec	Stiff Soil
D4	200-220 m/sec	
D5	180-200 m/sec	
E	- $180 \mathrm{~m} / \mathrm{sec}$	Soft Soil

Subsurface Lithological Layers

Subsurface Lithological 3D Model

Peak Ground Acceleration (PGA) Map at Ground Surface

Identifying Geological Formation up to Depth 30m

Using Data

- Lithology

I N values of Standard Penetration Test (SPT)

- Correlation with existing Stratigraphy in and around of the study area

Final output

Id	Vs30	Soil_Type	VS_Rangs	PGA_EBR	PGA_Soil	SA_0_2s_EBR	SA_0_2s_Soil	SA_1_Os_EBR	SA_1s_Soil	PP	Foundation _Depth (m)	Geomorphic_Unit
1	270	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.59	12	Wide Valley,Gentle Slope,
2	? 71	D2	? $250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	$\bigcirc 342$	0.60	0.684	0.225	0.3465	0.59	12	Wide Valley,Gentle Slope,
3	268	02	$25 \mathrm{Jm} / \mathrm{stc} 30 \mathrm{cmin} / \mathrm{c}$	J. 30	2.34\%	U.Ë́c	0.684	0.225	0.3465	0.71	12	Hillock with Flat Top,Gentle Slope,
4	267	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.64	12	Wide Valley,Hillock with Flat Top,Gentle Slope,
5	269	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.59	12	Wide Valley,Gentle Slope,
6	271	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.58	12	Gentle Slope,
7	273	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.57	12	Wide Valley,Gentle Slope,
8	275	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.56	12	Wide Valley,Gentle Slope,
9	268	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.76	12	Hillock with Flat Top,
10	266	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.76	12	Hillock with Flat Top,Gentle Slope,
11	264	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.70	12	Hillock with Flat Top,Gentle Slope,
12	263	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.63	12	Wide Valley,Hillock with Flat Top,Gentle Slope,
13	266	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.58	12	Wide Valley,Gentle Slope,
14	271	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.56	12	Gentle Slope,
15	276	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.55	12	Wide Valley,Gentle Slope,
16	280	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.53	12	Wide Valley,Gentle Slope,
17	271	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.63	12	Hillock with Flat Top,Gentle Slope,
18	268	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.68	12	Hillock with Flat Top,Gentle Slope,
19	265	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.68	12	Wide Valley,Hillock with Flat Top,Gentle Slope,
20	260	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.64	12	Wide Valley,Gentle Slope,
21	259	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.59	12	Wide Valley,Gentle Slope,
22	264	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.56	12	Wide Valley,Gentle Slope,
23	271	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.54	12	Wide Valley, Gentle Slope,
24	278	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.52	12	Wide Valley,Gentle Slope,
25	283	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.51	12	Wide Valley,Gentle Slope,
26	262	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.39	8	Narrow Valley,Gentle Slope,Depositional Flat Valley
27	255	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.32	8	Narrow Valley,Gentle Slope,Depositional Flat Valley
28	253	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.27	8	Narrow Valley,Gentle Slope,
29	259	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.41	8	Narrow Valley,Gentle Slope ${ }_{3}$
30	265	D2	$250 \mathrm{~m} / \mathrm{s}$ to $300 \mathrm{~m} / \mathrm{s}$	0.30	0.342	0.60	0.684	0.225	0.3465	0.56	8	Narrow Valley,Gentle Slope,

All Geological Information at 250 m * 250 m Grid

