'Preparation of Development Plan for Fourteen Upazilas' Package-2

Presentation on

Geological Works at

Ishwarganj, Raipura and Shibpur Upazila

(Draft Survey Report)

Presented by

Mohammed Jamal Uddin, Consultant Geologist

&

Fansab Mustahid
Associate Consultant Geologist

bjectives

To ensure the sustainable development, the prime objectives of this work is to determine subsurface soil condition of the project area and evaluating of natural geological and hydro-meteorological hazards such as earthquake, landslide and ground failure and integrate the consequence into the design of risk sensitive landuse planning.

ield activities and ub-surface nvestigations

- Geomorphologic field study
- Drilling of boreholes and preparation of borehole logs;
- Collection of undisturbed and disturbed soil sample as per standard guide line;
- Conducting standard penetration tests (SPTs);
- Drilling of boreholes and casing by PVC pipe for conducting PS logging test
- Conducting Down-hole Seismic Test (PS Logging) and
- Conducting Multi-Channel Analysis of Surface Wave (MASW).

Test Number

Upazila Name	Borehole (SPT)	Downhole Seismic Test (PS Logging)	MASW Test		
Raipura	12	3	5		
Shibpur	20	3	5		
Ishwarganj	30	4	5		

Drilling Locations for SPT Test

PS Logging and MASW Test Locations

PS logging Data Acquisitions at Raipura Upazila

PS logging Data Acquisitions at Ishwarganj Upazila

BH-03, Near Maijbagh Union Porishod, Maijbagh Union

BH-20, ChorNiclauchhoBiddaloy, IshwarganjSadar

PS logging Data Acquisitions at Shibpur Upazila

BH-11, Shibpur ideal school and college, ShibpurSadar

BH-04, Near Dulalpur Union porishod, Dulalpur Union

9

Down-Hole Seismic (PS Logging) Test Result

- •Down-Hole Seismic (PS Logging) Test data acquisition has been completed at three Upazilla in different locations on date 26th August 2016.
- Depth of observations was up to 30 meter for each hole
- •Field raw data is being processed and interpreted to provide sub-surface info respect to seismic activity in the project area.

MASW is 3, Atharobari Girls High School, Atharbari Union

MASW is 4, Ishwargani Degree College, Ishwargani Sadar

MASW Survey at Raipura

Package 02

Geological Survey of Haipura Upazila

MASW-Rai 4, Raipura College, Polastoli Union,

Summary of MASW Test Results of Raipura

MASW ID	Average Shear Wave Velocity (Vs 30)
MASW Rai 1	163.0 m/s
MASW Rai 2	172.7 m/s
MASW Rai 3	159.8 m/s
MASW Rai 4	155.2 m/s
MASW Rai 5	162.9 m/s

Source: Field survey, 201

- □ According to MASW test result, the average shear wave velocities at all location are less than 180 m/s.
- ☐Shear wave velocity of the project area is showing soft to moderate soil condition for foundation.
- ☐ The shear wave velocities at soil layer shows gradually increase from 110m/s to 230m/s.
- ☐ From those soil velocities, it can be saying the upper soils (depth around 15m) are soft soil and soil hardness gradually increases by increasing depth.

Summary of MASW Test Results of Shibpur

MASW ID	Average Shear Wave Velocity (Vs 30)
MASW Shib 1	188.9 m/s
MASW Shib 2	170.9 m/s
MASW Shib 3	178.4 m/s
MASW Shib 4	190.3 m/s
MASW Shib 5	205.3 m/s

Source: Field survey, 201

- According to MASW test result, shear wave velocity of the project area is showing soft to moderate soil condition for foundation.
- ☐MASW-01, MASW-04 and MASW -05 test results are showing more than 180 m/s but others two locations the average velocity is bellow 180m/s.
- ☐ The shear wave velocities at soil layer shows gradually increase from 110m/s to 230m/s.
- ☐ From those soil velocities, it can be saying the upper soils (depth around 15m) are soft soil and soil strength gradually increases by increasing depth.

Summary of MASW Test Results of Ishwarganj

Average Shear Wave Velocity (Vs 30)
207.1 m/s
203.4 m/s
201.4 m/s
204.2 m/s
199.7 m/s

Source: Field survey, 201

- ☐ According to MASW test result, average shear wave velocity at all locations are above 180 m/s.
- ☐ From those shear wave velocity, it can be saying, the project area is showing moderate soil condition for foundation.
- ☐ The shear wave velocities at soil layer shows gradually increase from 110m/s to 300m/s.
- □ From those soil velocities, it can be saying the upper soils (depth around 15m) are soft soil and soil hardness gradually increases by increasing depth.

F & F & F & F & F & F

- For geotechnical investigations, 30, 12 and 20 boreholes has been conducted at Ishwarganj, Raipura and Shibpur Upazila respectively
- The borings with SPT were carried out at all numbers of borehole in the respective Upazilas.
- Undisturbed samples and disturbed soil sample has been collected for further lab test. All samples are clearly labeled to show the project name, date, location, borehole number, depth and method of sampling; in addition, each sample should be given a serial number.
 Special care has been taken in the handling, transportation and storage of samples (particularly undisturbed samples) prior to testing.
- Investigation borings with standard penetration test were conducted in order to know vertical geological conditions.

tandard enetration esting

Preparing borehole for Standard Penetration Test

Drilling in the borehole

Blowing with hammer for calculating Standard Penetration resistance

Soil sample in split spoon

Engineering Geotechnical Logs

xpected utcomes from the study

- Preparation of geological and geomorphologic map preparation of the study area from satellite image.
- Regional morph-tectonic and neo-tectonic mapping for potential earthquake source area identification.
- Preparation of sub-surface litho-logical 3D model of different layers through geo- technical investigation
- Foundation layer map which showing the depth of the foundation from existing ground level for footing.
- Preparation of engineering geological mapping based on AVS30
- Preparation of Seismic Hazard Assessment Map
- Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) map.
- Recommended building height maps for both high rise building and low rise building
- Finally intensity map is prepared for high rise and low rise building

andusian

- ☐ All kind of field survey data(geological, geotechnical and geophysical) acquisition has been completed.
- The above mention data would give a clear idea about the geo-hazard status of particular landscape where newly urban developing activities or any other mega infrastructure project is going on and this mentioned investigation also gives idea about the vulnerability of existing build up infrastructure of a particular area.
- Based on these results, proper management techniques as well as other necessary adaptation process could be addressed before or after the development activities in the studied area. It is to be mentioned that the long-term maintenance cost will be reduced and the developed structure will withstand against the potential natural hazards if the infrastructures are built following the risk informed physical land-use plan.

Some example of Final outcomes

Geomorphology map

Preparation of geomorphologic -al maps using satellite images, borehole information and DEM

Valleys

- Depositional flat valley
- Wide valley
- Narrow valley

Slopes

- Gentle slope(0-15°)
- Moderate slope(15°-25°)
- Steep slope(>25°)

Hillocks

- Hillock with flat top
- Hillock with narrow top

Engineering Geology Map

Geological formation

- •Clay dominated sequence -Dihing Formation upper part of the Dupi Tila Formation
- •Silt and silty clay dominated sequence- The middle or lower part of the Dupi Tila Formation
- •<u>Sand dominated sequence</u>- Tipam Formation

Engineering geological mapping based on AVS30

Ground	V_{s30}	Soil Type	Relative Quality	
Class				
С	360 - 760 m/sec	Very Dense/ Hard Soil and Soft rock	Very Good Soil	
D1	300 - 360 m/sec Stiff / Dense to very dense/Hard Soi		Moderately good soil	
D2	250 - 300 m/sec	Stiff / Dense Soil	Relatively Good soil	
D3	220 - 250 m/sec	Good soil 28		

Foundation laver map

Green shaded area represents zone suitable for shallow foundation to a depth of <u>03 meters</u> whereas red shaded area indicates places not suitable for shallow foundation zone.

Usually, valley areas were found to be not suitable for shallow foundation whereas the hill tops were found to be suitable for shallow foundation.

29

Building Heights

□4 to 6 (Resonance 0.2-0.3 s) story buildings are suggested for construction in the valley/ depositional flat valley

☐ Whereas it is 1 to 6 (Resonance: 0.7-0.9s) story buildings for hillock.

Seismic Hazard Map (Return Period 475 Years)

Peak Ground Acceleration at Ground surface

Soil Type Map

Subsurface Lithological Layers

Subsurface Lithological 3D Model

Identifying Geological Formation up to Depth 30m

Using Data

- ☐ Lithology
- N values of Standard Penetration Test (SPT)
- □ Correlation with existing Stratigraphy in and around of the study area

Final output

Id	Vs30	Soil_Type	VS_Rangs	PGA_EBR	PGA_Soil	SA_O_2s_EBR	SA_0_2s_Soil	SA_1_0s_EBR	SA_1s_Soil	PP	Foundation _Depth (m)	Geomorphic_Unit
1	270	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.59	12	Wide Valley,Gentle Slope,
2	271	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.59	12	Wide Valley,Gentle Slope,
3	268	22	250m/s to 300m/s	0.30	0.342	J3.0	0.684	0.225	0.3465	0.71	12	Hillock with Flat Top,Gentle Slope,
4	267	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.64	12	Wide Valley,Hillock with Flat Top,Gentle Slope,
5	269	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.59	12	Wide Valley,Gentle Slope,
6	271	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.58	12	Gentle Slope,
7	273	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.57	12	Wide Valley, Gentle Slope,
8	275	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.56	12	Wide Valley,Gentle Slope,
9	268	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.76	12	Hillock with Flat Top,
10	266	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.76	12	Hillock with Flat Top,Gentle Slope,
11	264	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.70	12	Hillock with Flat Top,Gentle Slope,
12	263	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.63	12	Wide Valley,Hillock with Flat Top,Gentle Slope,
13	266	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.58	12	Wide Valley, Gentle Slope,
14	271	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.56	12	Gentle Slope,
15	276	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.55	12	Wide Valley, Gentle Slope,
16	280	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.53	12	Wide Valley, Gentle Slope,
17	271	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.63	12	Hillock with Flat Top,Gentle Slope,
18	268	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.68	12	Hillock with Flat Top,Gentle Slope,
19	265	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.68	12	Wide Valley,Hillock with Flat Top,Gentle Slope,
20	260	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.64	12	Wide Valley,Gentle Slope,
21	259	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.59	12	Wide Valley, Gentle Slope,
22	264	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.56	12	Wide Valley, Gentle Slope,
23	271	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.54	12	Wide Valley,Gentle Slope,
24	278	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.52	12	Wide Valley, Gentle Slope,
25	283	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.51	12	Wide Valley, Gentle Slope,
26	262	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.39	8	Narrow Valley,Gentle Slope,Depositional Flat Valley
27	255	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.32	8	Narrow Valley, Gentle Slope, Depositional Flat Valley
28	253	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.27	8	Narrow Valley, Gentle Slope,
29	259	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.41	8	Narrow Valley, Gentle Slope,
30	265	D2	250m/s to 300m/s	0.30	0.342	0.60	0.684	0.225	0.3465	0.56	8	Narrow Valley,Gentle Slope, ³ /

All Geological Information at 250m * 250m Grid

