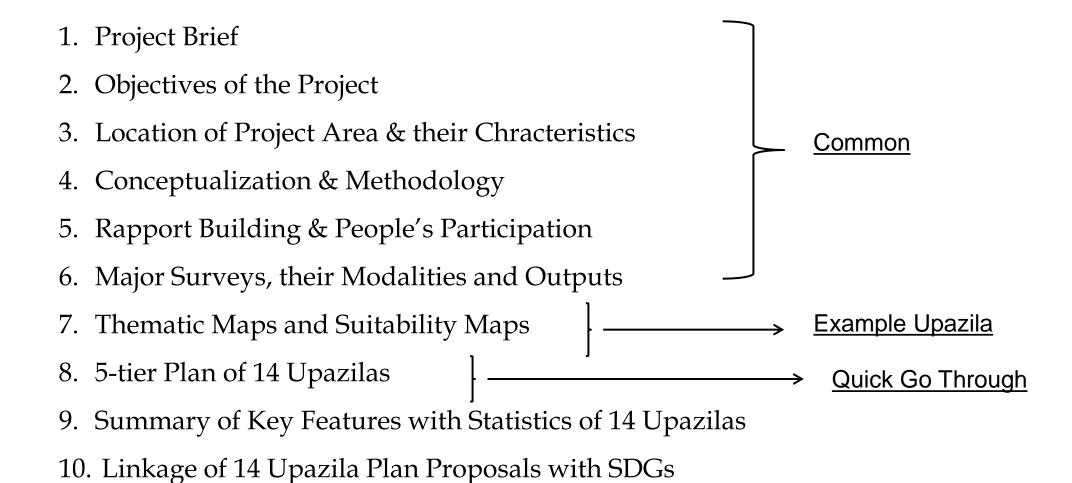


Government of the People's Republic of Bangladesh Ministry of Housing and Public Works

Preparation of Development Plan for Fourteen Upazilas Project

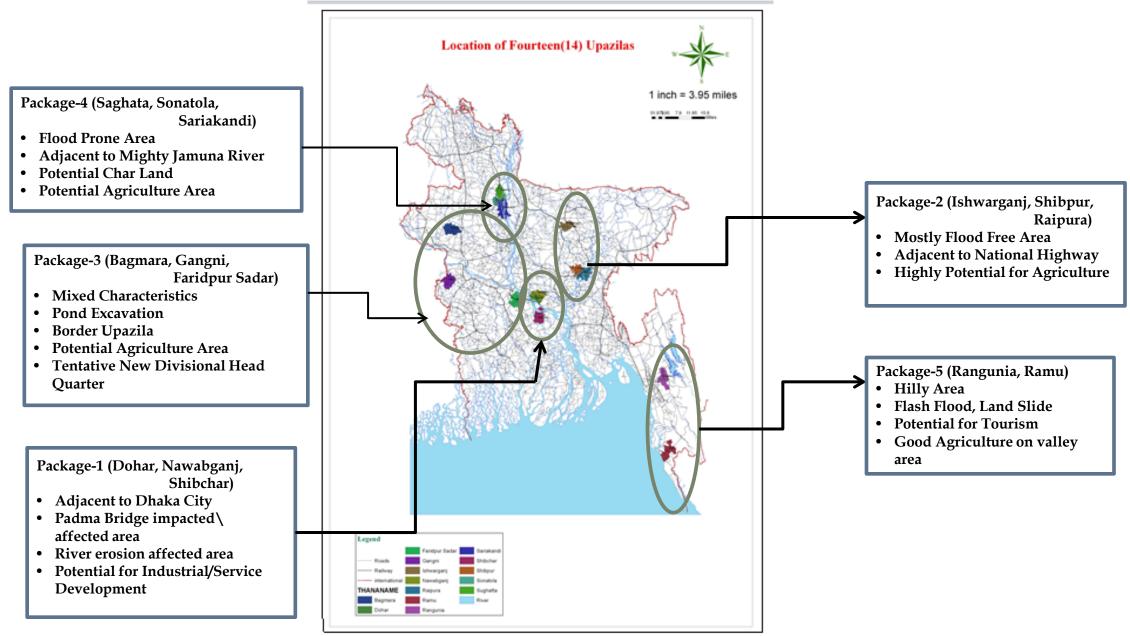

Presented by
Shaheen Ahmed
Senior Planner & Project Director

Urban Development Directorate (UDD)

Contact: 01777-400-959

E-mail: ashaheen1192@gmail.com

Presentation Outline


Project Brief

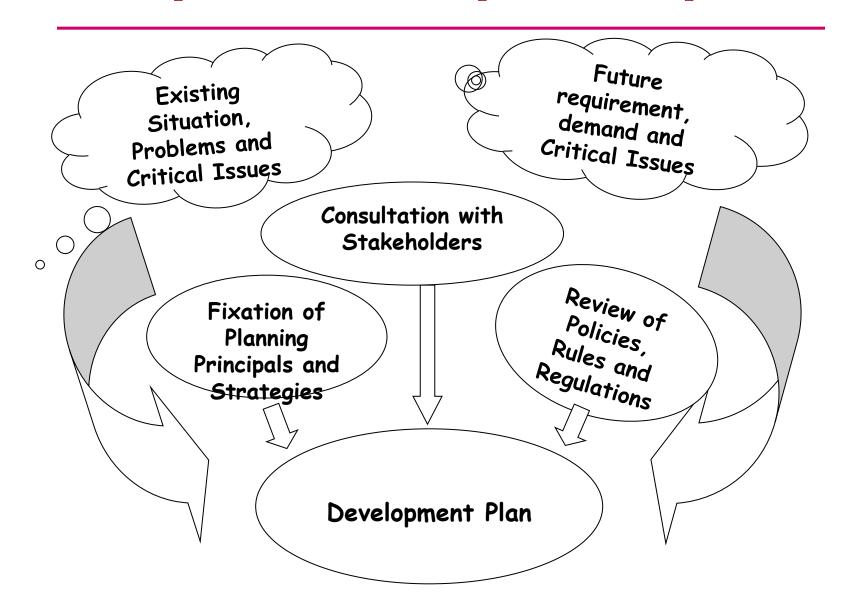
- Name: Preparation of Development Plan for Fourteen Upazilas
- Organization: Urban Development Directorate (UDD)
- Ministry: Ministry of Housing and Public Works
- Funding: Government of Bangladesh
- Upazilas: 14
- Planning Area: 4335.83 Sq.Km.
 [Urban: 218.82 Sq.Km. (5.05%), Rural: 4117.01 Sq.Km. (94.95%)]
- Existing Beneficiary: 38,64,195 [Urban: 5,04,525 (13%), Rural: 33,59,670 (87%)]
- Projected Beneficiary (2033): 57,96,292
- Project Period: June 2013 to June 2018
- Project Budget: 2054.44 Lakh (GoB)

Objective (s) of the Project:

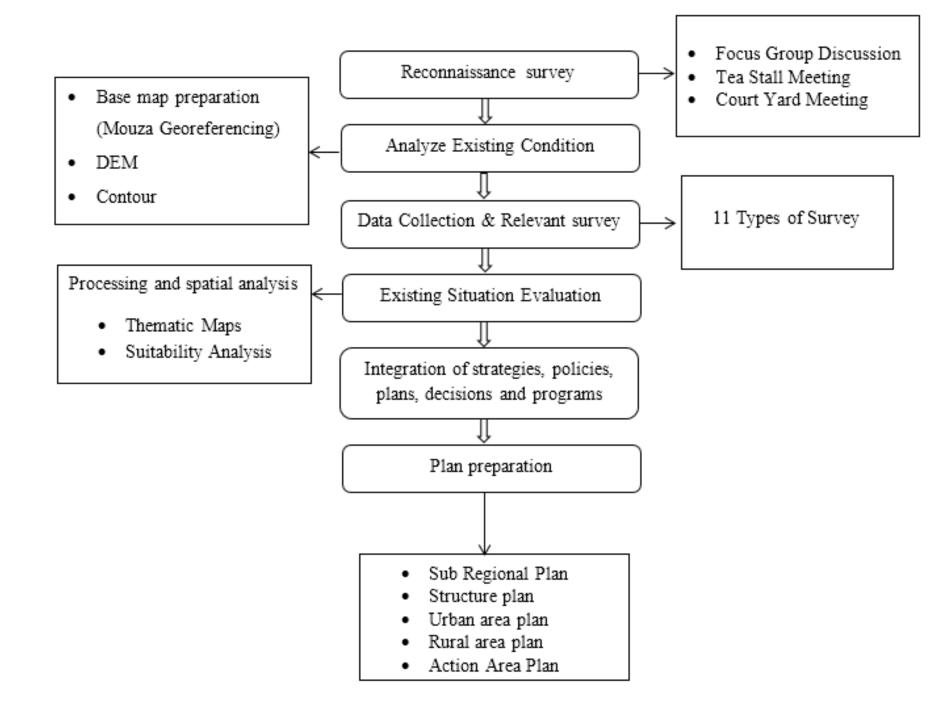
- To guide the land use transformation in an integrated and harmonic manner with a view to accelerate the economic and socio- political development of the project area.
- To protect the most valuable agricultural land from any other unplanned transformation
- To allow the towns to play their active socio-economic role within the Physical Planning, agriculture, transportation, drainage, water Supply, housing and other important relevant sectors
- To reduce disaster risk and vulnerability of the people of the project area through structure and non-structural interventions
- To improve awareness of natural and man-made hazard mitigation among the people of project area.
- To formulate 5-tier Plan (Sub-regional plan, Structure plan, Urban area plan, Rural area Plan and Action area plan) for development planning of the project area, additionally
- To formulate **Contingency Plan** for fourteen upazilas

Map: Location of 14 Upazilas and their Characteristics

Number of Planning Packages under this Project:


Sl. No.	Packages	Name of upazilas	Consulting Firms assigned
1.	Package-1	Nawabganj, Dohar, Shibchar	Desh-Upodesh in Association with AAima Int. BD & Texsus Ltd.
2.	Package-2	Ishwarganj, Raipura, Shibpur	JV of Sheltech (Pvt.) Ltd & Arc Bangladesh Ltd.
3.	Package-3	Bagmara, Faridpur sadar, Gangni	Engineers, Consultants and Associates Ltd. (ECAL)
4.	Package-4	Saghatta, Sonatota, Sariakandi	Modern Engineers, Planners & Consutants Ltd.
5.	Package-5	Ramu, Rangunia	JV of House of Consultants and Dm-Watch

Planning Area and Number of Beneficiary:


	Name of District		Planning					Total
Sl. No.		Name of upazila	Area (sq.km)	Urban area	Rural area	Urban Population	Rural Population	Total Existing Beneficiary
	Dhaka	Nawabganj	244.8	1.76	243.04	77590	410438	488028
1		Dohar	161.49	20.31	141.18	61793	129630	191423
2	Chittagong	Rangunia	361.54	37.08	324.46	53035	245335	298370
3	Cox bazar	Ramu	391.71	22.03	369.68	33334	169349	202683
4	Rajshahi	Bagmara	363.3	26.58	336.72	34632	285336	319968
5	Faridpur	Faridpur	407.02	23.45	383.57	101084	312401	413485
6	Mymensingh	Ishwarganj	286.19	15.82	270.37	30948	307132	338080
7	Madaripur	Shibchar	321.88	17.02	304.86	27877	296561	324438
	Narsingdi	Shibpur	232.47	3.52	228.95	10426	303394	313820
8		Raipura	408.45	13.49	394.96	34411	420135	454546
	Bogra	Sariakandi	432.6	3.58	429.02	17320	222763	240083
9		Sonatala	156.73	4.94	151.79	11405	156142	167547
10	Gaibanda	Saghata	225.67	6.38	219.29	15549	234720	250269
11	Meherpur	Gangni	341.98	22.86	319.12	23846	245239	269085
	Total		4335.83	218.82	4117.01	504525	3359670	38,64,195

Projected Beneficiary (2033): 57,96,292 (Approx.)

Conceptualization of Development Plan Preparation

Methodology

Surveys Conducted.... Agriculture Survey Socio Formal Informal Economic Survey Survey Physical Hydrological Surveying Feature Survey Survey Transport Geological Survey Survey PRA (Participator y Rapid Appraisal)

Government of the People's Republic of Bangladesh Ministry of Housing and Public Works Urban Development Directorate (UDD)

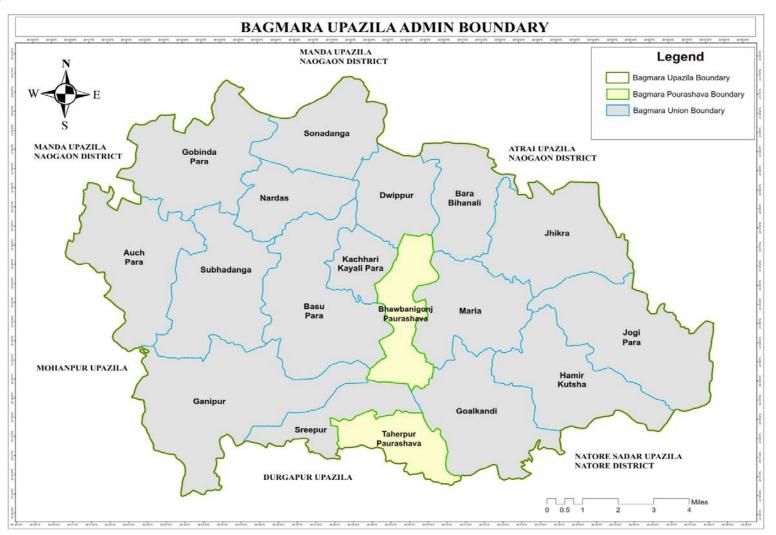
Preparation of Development Plan for Fourteen Upazilas Package 03-(Bagmara Upazila)

CONSULTANT

Engineering Consultants and Associates Limited (ECAL)

What we have done for Bagmara Upazila, for Example.....

- Planning Package Description
- At a Glance about BagmaraUpazila
- Undertaken Surveys at BagmaraUpazila
- Survey Outputs
- Thematic Maps
- Suitability Maps
- Draft and Final Plan Preparation


Project Area Map

Area = 363.3 sq km,

Thana was formed in 1869 and it was turned into an Upazila in 1984.

Water Bodies:

Baranai; Fakinni river, Beel Joshoi, Takta Beel, Mosher Beel, Nakkati Beel, Katila Beel

Bagmara Upazila

- Planning Package: 03-(Bagmara Upazila, District- Rajshahi, Faridpur Sadar Upazila, District- Faridpur and Gangni Upazila, District-Meherpur)
- Planning Area: Bagmara Upazila: 363.3 Sq. kilometer (BBS,2011)
- Main Goal of Development Plan: Preparation of Five Tiers Development Plan
- Sub Regional Plan, Structure Plan, Urban Area Plan, Rural Area Plan and Action Area Plan
- Contingency Plan

At a Glance about Bagmara Upazila

Upazila (363.3 sq.km)								
Municipality	Union	Mouza	Village	Popu	ılation	Density (per Sq.	Literac	
- Walliespulley	cipality Cilion iv	viiiuge	v mage	Urban	Rural	km)	(% Urban	Rural
2	16	358	332	34,632	285,336	881	43.30	38.31

Bwabaniganj Municipality (Pouro Webportal)					
Area	Ward	Mahalla	Population	Density	Literacy rate
(sq. km.)				(per sq. km)	(%)
10.00	9	23	19,550	1,178	64.6

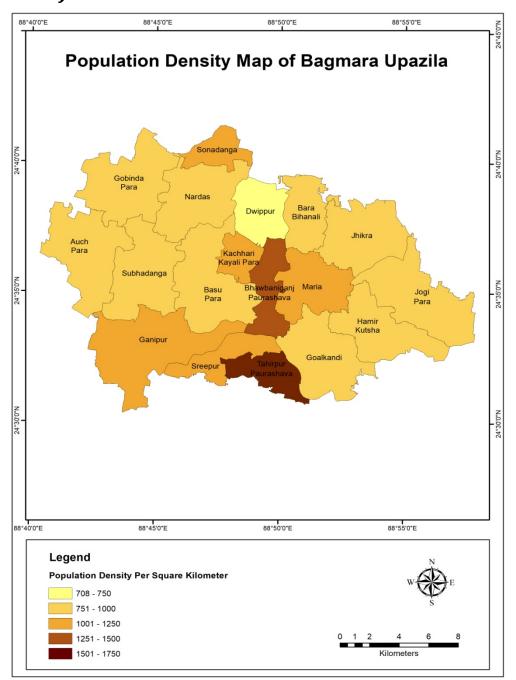
Taherpur Municipality (Pouro Webportal)					
Area (sq. km.)	Ward	Mahalla	Population	Density (per sq. km)	Literacy rate (%)
10.825	9	18	30,141	778	76

(Source: BBS, 2011)

Population Projection

Exponential Compound Growth Method has been used for population projection

Area	Base Year Population	Projected Population (Consider Medium Growth Rate, 1.28%)			
	(BBS,2011)	2018	2023	2028	2035
Paurashava	35899	39242	41818	44564	48714
Rural Area	318765	348447	371326	395707	432553
Total	354664	387689	413144	440271	481267


Urban Area Population Projection

Pourashava		Projected Population (Consider Medium Growth Rate, 1.28%)			
	(BBS,2011)	2018	2023	2028	2035
Bwabaniganj	17955	19627	20916	22289	24364
Taherpur	17944	19615	20903	22275	24349

16

Rural Area Population Projection

Unions	Base Year Population (BBS,2011)	Projected Population (Consider Medium Growth Rate, 1.28%) 2035
Auch Para	26685	36211
Bara Bihanali	12571	17058
Basu Para	26943	36561
Dwippur	9852	13369
Goalkandi	24275	32940
Gobinda Para	22707	30813
Ganipur	36469	49487
Hamir Kutsha	19817	26891
Jhikra	22026	29889
Jogipara	24830	33693
Kachari Kayali Para	7509	10189
Maria	19487	26443
Nardas	19528	26499
Sonadanga	8684	11784
Sreepur	11789	15997
Shubhadanga	25593	34729

Survey Conducted in the whole Upazila....

Participatory Rapid Appraisal (PRA)

Purpose of PRA

- To involve the local people in the planning process by letting the local people identify their own problems, potentials, development needs and planning priorities for next 20 years;
- Supplement and facilitate matching PRA findings with different sectoral findings, particularly spatial analysis;
- Make participants To make participants own the project and its activities towards realizing participatory planning approach.

PRA Tools

- Social/Resource Mapping
- Problems and Potentials Venn Diagram
- Technology of Participation (ToP)/Consensus Workshop.

■ PRA Sessions-34

• (Union: 16 and Pourashava Wards: 18)

Participatory Rural Appraisal (PRA)

PRA Taherpur Pourashava, Bagmara

PRA Bhabaniganj Pourashava, Bagmara

(Source: Field Survey ,2016)

Union/Ward	Problems	Potentials
Auchpara Union	 Communication Pure drinking water Drainage problem Education Unemployment 	 Agricultural land Fruit garden Cattle farming Fish farming Active manpower
Basu Para Union	 Communication Pure drinking water Agricultural problem Educational infrastructure Health service 	 Agricultural land Educated people Cattle farming Fish farming Farmer
Bara Bihanali Union	 Communication HealthFacilities Water Logging Electricity Child Marriage 	 Agriculture Fisheries Livestock & Fisheries Hat-Bazar Man power
Dwippur Union	 Communication Health Facilities Water Logging Electricity Child Marriage 	 Agriculture Fisheries Livestock & Fisheries Hat-Bazar Man power
Goalkandi Union	 Polder Communication Pure Drinking water Agricultural Instruments Health Complex lacking 	 Bill Agricultural Land availability Fisheries Active Manpower Livestock

Union/Ward	Problems	Potentials
Gabindapara Union	 Communication Electricity Pure Drinking Water Modern Education Agriculture 	 Agricultural Land Active Manpower Livestock & Fisheries Educational Institutions Hat-Bazar
Gonipur Union	 Communication Pure Drinking Water Electricity Education Health 	 Bettle leaf Agriculture Fisheries Livestock Hat-Bazar
Hamirkutsha Union	 Communication Health Facilities Water Logging Electricity Child Marriage 	 Agriculture Fisheries Livestock Hat-Bazar Man Power
Jhikra Union	 Communication Electricity Water Logging Health Facilities Industry Lacking 	 Agriculture Land Fisheries Livestock Hat-Bazar Fruits & Forest
Jogipara Union	 Communication Pure Drinking Water Drainage Problem Education Unemployment 	 Agriculture Land Fruit Garden Cattle Farming Fish Farming Active Manpower

Union/Ward	Problems	Potentials
Kachari Kayalipara Union	 Communication Electricity Educational Institute Health Facilities River Digging 	 Agriculture Fisheries Livestock Adeqate River Man Power
Maria Union	 Communication Agricultural Facilities Health Facilities Residential Agriculture 	 Agriculture Land Fruit Garden Cattle Farming Fish Farming Active Manpower
Nordas Union	 Communication Pure Drinking Water Drainage Problem Education Unemployment 	 Agriculture Land Fruit Garden Cattle Farming Fish Farming Active Manpower
Sonadanga Union	 Communication Water Logging Education Agricultural Facilities Electricity & Fuel 	 Agriculture Fruit Garden Manpower Livestock & Fisheries Hat-Bazar
Sreepur Union	 Communication Agricultural Facilities Health Facilities Residential Agriculture 	 Agriculture Land Fruit Garden Cattle Farming Fish Farmnig Acticve Manpower

Union/Ward	Problems	Potentials
Subhadanga Union	 Communication Agricultural Facilities Health Facilities Residential Agriculture 	 Agriculture Land Educated Person Cattle Farming Fish Farmnig Active Manpower
Bwabanigonj Pourashava Ward No. 01	 Shortage of Pure Drinking Water Road Broken Water Logging Unemployment to Women Problem of Drug addiction & Entertainment 	 River Children Park Natural Cannel Bus Stand Main Road in City
Bwabanigonj Pourashava Ward No. 02	 Shortage of Pure Drinking Water Road Broken Water Logging Unemployment to Women Problem of Drug addiction & Entertainment 	 River Children Park Natural Cannel Bus Stand Main Road in City
Bwabanigonj Pourashava Ward No. 03	 Shortage of Pure Drinking Water Road Broken Water Logging Unemployment to Women Problem of Drug addiction & Entertainment 	 River Children Park Natural Cannel Bus Stand Main Road in City
Bwabanigonj Pourashava Ward No. 04	 Shortage of Pure Drinking Water Road Broken Water Logging Unemployment to Women Problem of Drug addiction & Entertainment 	 River Children Park Natural Cannel Bus Stand Main Road in City

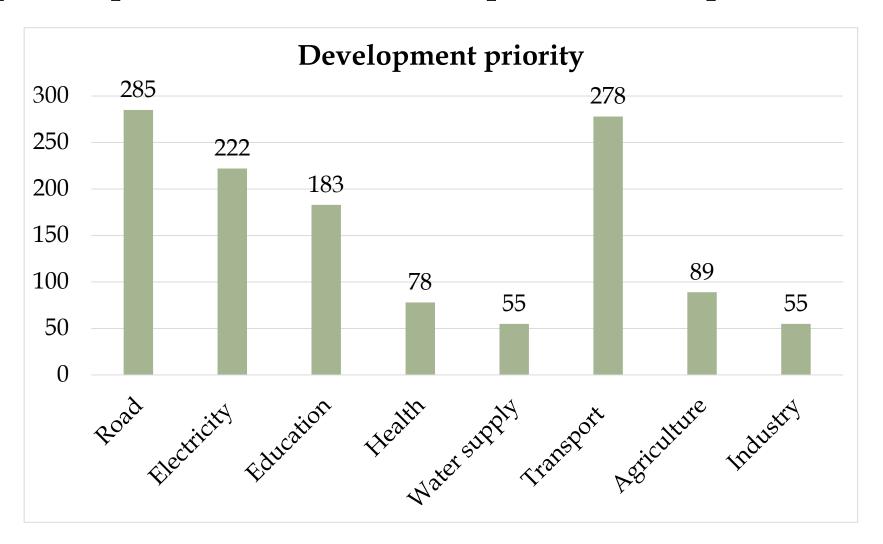
Linion Maland Bushloms Betantials							
Union/Ward	Problems	Potentials					
	Shortage of Pure Drinking Water	> River					
Bwabanigonj Pourashava	Road Broken	Children Park					
Ward No. 05	Water Logging	Natural Cannel					
Vulu 110.00	Unemployment to Women	Bus Stand					
	Problem of Drug addiction & Entertainment	Main Road in City					
	Shortage of Pure Drinking Water	River					
Bwabanigonj Pourashava	Road Broken	Children Park					
Ward No. 06	Water Logging	Natural Cannel					
vvara 1 vo. 00	Unemployment to Women	Bus Stand					
	Problem of Drug addiction & Entertainment	Main Road in City					
	Shortage of Pure Drinking Water	River					
Bwabanigonj Pourashava	Road Broken	Children Park					
Ward No. 07	Water Logging	Natural Cannel					
vvalu No. 07	Unemployment to Women	Bus Stand					
	Problem of Drug addiction & Entertainment	Main Road in City					
	Shortage of Pure Drinking Water	River					
Bwabanigonj Pourashava	Road Broken	Children Park					
Ward No. 08	Water Logging	Natural Cannel					
valu 1 10. 00	Unemployment to Women	Bus Stand					
	Problem of Drug addiction & Entertainment	Main Road in City					
	Shortage of Pure Drinking Water	River					
	Road Broken	Children Park					
Bwabanigonj Pourashava	Water Logging	Natural Cannel					
Ward No. 09	Unemployment to Women	Bus Stand					
	Problem of Drug addiction & Entertainment	Main Road in City					

Union/Ward	Problems	Potentials
Taherpur Pourashava Ward No. 01	 Shortage of Pure Drinking Water Road Broken Water Logging Unemployment to Women Problem of Drug addiction & Entertainment 	 River Children Park Natural Cannel Bus Stand Main Road in City
Taherpur Pourashava Ward No. 02	 Shortage of Pure Drinking Water Road Broken Water Logging Unemployment to Women Problem of Drug addiction & Entertainment 	 River Children Park Natural Cannel Bus Stand Main Road in City
Taherpur Pourashava Ward No. 03	 Shortage of Pure Drinking Water Road Broken Water Logging Unemployment to Women Problem of Drug addiction & Entertainment 	 River Children Park Natural Cannel Bus Stand Main Road in City
Taherpur Pourashava Ward No. 04	 Shortage of Pure Drinking Water Road Broken Water Logging Unemployment to Women Problem of Drug addiction & Entertainment 	 River Children Park Natural Cannel Bus Stand Main Road in City
Taherpur Pourashava Ward No. 05	 Shortage of Pure Drinking Water Road Broken Water Logging Unemployment to Women Problem of Drug addiction & Entertainment 	 River Children Park Natural Cannel Bus Stand Main Road in City

Union/Ward	Problems	Potentials				
	Shortage of Pure Drinking Water	> River				
Tahawaya Dayya ahayya	Road Broken	Children Park				
Taherpur Pourashava Ward No. 06	Water Logging	Natural Cannel				
vvaru No. 00	Unemployment to Women	Bus Stand				
	Problem of Drug addiction & Entertainment	Main Road in City				
	Shortage of Pure Drinking Water	River				
Tahaman Dangachara	Road Broken	Children Park				
Taherpur Pourashava Ward No. 07	Water Logging	Natural Cannel				
vvaru No. 07	Unemployment to Women	Bus Stand				
	Problem of Drug addiction & Entertainment	Main Road in City				
	Shortage of Pure Drinking Water	River				
Tahamun Daurachara	Road Broken	Children Park				
Taherpur Pourashava Ward No. 08	Water Logging	Natural Cannel				
vvalu No. 00	Unemployment to Women	Bus Stand				
	Problem of Drug addiction & Entertainment	Main Road in City				
	Shortage of Pure Drinking Water	River				
Tahornur Pourracharra	Road Broken	Children Park				
Taherpur Pourashava Ward No. 09	Water Logging	Natural Cannel				
vvalu ivo. 03	Unemployment to Women	Bus Stand				
	Problem of Drug addiction & Entertainment	➤ Main Road in City				

Development Priorities through PRA

- Short Term (1-5 Years): Improvement of Health Service , Development of Educational System, Employment Opportunity, Improvement of Agriculture, River Dredging, Sanitation.
- Mid Term (5-10 Years): Development of Educational System, Improvement of Agriculture, Employment, River Dredging, Development of Educational System
- Long Term (10-20 Years): Improvement of Communication System, Establishment of Adequate Education & Health, Recreational Facilities, Increased Amount of Industrial Investment etc.


Socio Economic Survey

Objectives of the Survey

- Demographic and socio-economic characteristics of households and population;
- Union and Pourashava/Upazila HQ (as the case may be) service provisions, including infrastructure and social facilities;
- Access to the essential services and facilities; and
- To suggest some concrete recommendations for the development of Upazila.

Upazila	Urban Area	Rural Area	Whole Upazila
Bagmara	115	778	893

People's Aspiration about the Development of the Upazila

Socio Economic Survey

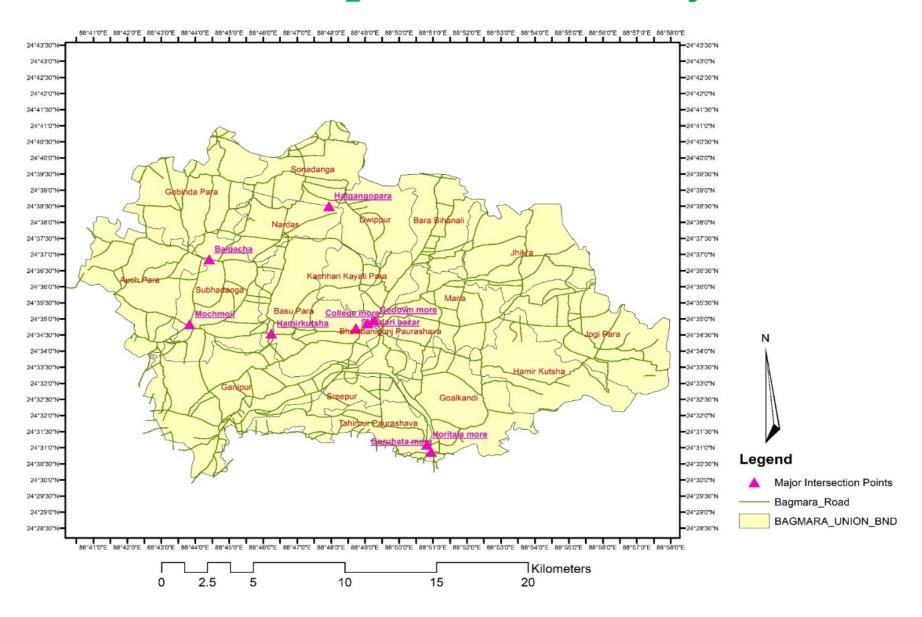
Formal and Informal Economic Survey

Name of Upazila	Name of Work	Quantity		
Bagmara	Field work	235		

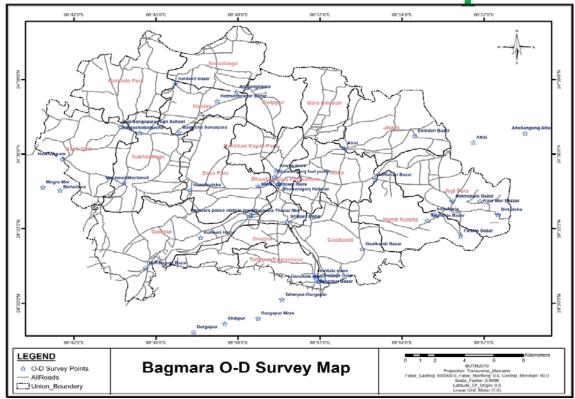
Production amount and their yearly price

Industries	Avg. Price in BDT
Brick Field	4,69,82,000
Ice factory	5,34,000
Workshop	16,60,000
Building materials	42,90,000
Cottage	22,500
Rice mill	1,37,00,000
Workshop	8,16,000
Yarn and Fabrics industry	9,99,333
Handicrafts	67,000
Yarn and Fabrics industry	9,99,333

nformal

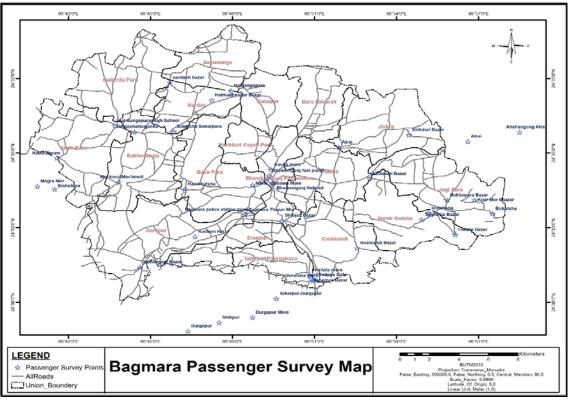

Industries	Yearly price of products in BDT			
Poultry	29,51,000			
Dairy farm	8,77,000			
Nursery	46,00,000			
Furniture making	48,80,000			

Traffic and Transportation Survey


- **■** Traffic Volume Count Survey
- Origin & Destination (O-D) Survey
- **■** Passenger Interview Survey and
- **■** Regional Transportation Survey

Method	Type of Survey	Sample Size
	O-D Survey	24
Questionnaire	Traffic Volume	33
	Inter Regional Trip Survey	12
	Passenger Inter view	56

Traffic and Transportation Survey



Traffic and Transportation Survey

Locations of Origin Destination Survey at Bagmara Upazila

Location of Passenger Interview Survey at Bagmara Upazila

Destination Origin	Atrai	Bwabanigonj	Dewlia	Gangepara	Jhikra	Kaligonj	Keshorhat	Machmoil	Puthia	Rajshahi	Total
Atrai	0	2	0	0	0	0	0	0	0	0	2
7 KTAI	0				0				0		
Bwabanigonj	0	0	0	0	0	0	0	0	0	0	0
Dewlia	0	0	0	0	0	0	0	0	0	0	0
Gangepara	0	2	0	0	0	0	0	0	0	0	2
Jhikra	0	2	0	0	0	0	0	0	0	0	2
Kaligonj	0	2	0	0	0	0	0	0	0	0	2
Keshorhat	0	1	0	0	0	0	0	1	0	0	2
Machmoil	0	1	1	0	0	0	0	0	0	0	2
Puthia	0	0	0	0	1	0	0	0	0	0	1
Rajshahi	0	1	0	0	0	0	0	0	0	0	1
Total	0	11	1	0	1	0	0	1	0	0	14

(Source: Field Survey ,2016)

Agricultural Survey

Plate 1: Farmer Betel Leaf Field

Plate 3: Maize Crop Field

Plate 2: Farmer Chili Field

Plate 4:Harvested T. Aman Rice Field

Bagmara Upazila Present Land Use

Upozilo Londuno	Total Area (ba)
Upazila Land use	Total Area (ha)
Total Area	36558
High land	6550
Medium high land	12180
Medium low land	5330
Low land	5050
Single cropped area	3290
Double cropped area	9180
Triple cropped area	15850
More than three cropped area	690
Net Cropped area	29110
Total cropped area	71960
Cropping Intensity (%)	247
Forest	270
Permanent fallow land	1267
Current/Seasonal Fallow Land: - Rabi fallow	00
- Kharif-1 fallow	3010
- Kharif-2 fallow	3020
Urban Built-up area	142.36
Permanent fruit garden	875
Betel Vine	640
Irrigated land area	28010
Water land (River, Ponds and others)	1375
Brick Field	99.50
Rural Settlement and HV	9352.55

PRESENT CROPPING PATTERN OF BAGMARA UPAZILA

Crop Grown	Crop area(ha)	Yield/ha (mt)	Production (mt)	Contribution (%)
T. Aus (HYV)	11700	2.82	32994	19.20
T. Aman(LV)	10	1.9	19	0.01
T. Aman(HYV)	810	2.67	2162.7	1.26
Boro (HYV)	13210	8.2	108322	63.05
Boro (Hybrid)	5550	5.1	28305	16.48
Sub Total Rice	31280		171802.7	100.00
Summer Vegetables	1705	13	22165	4.55
Winter vegetables	2705	12	32460	6.66
Wheat	1590	3.6	5724	1.17
Maize	4220	6	25320	5.20
Jute	670	3.5	2345	0.48
Sweet Potato	15	25	375	0.08
Potato	13320	22.35	297702	61.11
Spices (Onion & Garlic etc)	5088	15.52	78965.76	16.21
Oil seeds (Mustard, Til, Groundnut)	6755	1.3	8781.5	1.80
Betel Leaf	640	18.3	11712	2.40
Pulses	170	1.31	222.7	0.05
Sugarcane	25	14.9	372.5	0.08
Fruits (Orchard)	40	25.68	1027.2	0.21
Sub-Total	36943		487172.66	100.00
Total	68223		658975.36	

Source: SAAOs and UAO, Bagmara Sadar Upazila, DAE 2016.

Agricultural Questionnaire Survey

Major Problems of Crop Production (16 Unions & 02 Paurashavas)

- ⇒ Water logging causes damages crops.
- ⇒ Drought and cold wave create negative impact on diversification of crops.
- ⇒ Most of the canals/khals of the Unions & Paurashavas were found mostly closed or silted.
- ⇒ Changes in rainfall pattern and climate change.
- ⇒ Lack of knowledge both men and women farmers on crop production technology and farmers financial problems for adaption of modern technology.
- ⇒ Scarcity of surface water for irrigation, higher cost Shallow Tube Wells(STWs) and Deep Tube Wells(DTWs).
- ⇒ Less supply of quality HYV/Hybrid and stress tolerant variety crop seeds and cultivation equipment's (power tiller, thresher, foot pump etc).
- ⇒ Inadequate drainage facilities and kutcha irrigation drainage system.
- ⇒ Inadequate electricity supply hampers irrigation for Boro and other irrigated crops.

Major Problems Of Crop Production (16 Unions & 02 Paurashavas) ... Cont.

- ⇒ Agriculture marketing system and infrastructure are not developed.
- ⇒ Shortage of cold storage, seed store and wholesale vegetables market infrastructure.
- ⇒ Using less amount of bio-fertilizers and green manure or compost.
- ⇒ Cultivable agriculture lands are reducing every year due to unplanned construction of houses ,roads, and settlements, markets, industries, unplanned fish and poultry production.
- ⇒ Over-drainage, abrupt reduction of wet land, restricts open water fisheries and its breeding place.
- ⇒ Acquisition of agricultural land for non- agriculture purposes.
- ⇒ Top soil cutting and filling sand, unplanned expansion of urban and commercial areas.
- ⇒ Lack of potato, vegetable, betel leaf processing, grading and packaging facility.
- ⇒ There is no agro processing center and industries under Unions and Upazila level.
- ⇒ City migration.

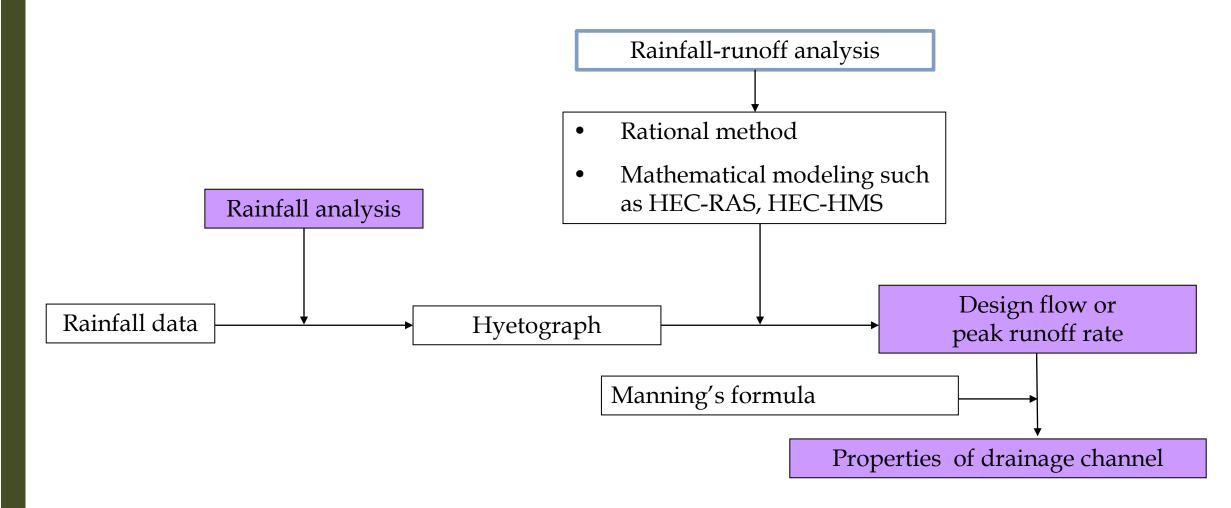
Hydrological Survey

Collection Review of Data & Reports

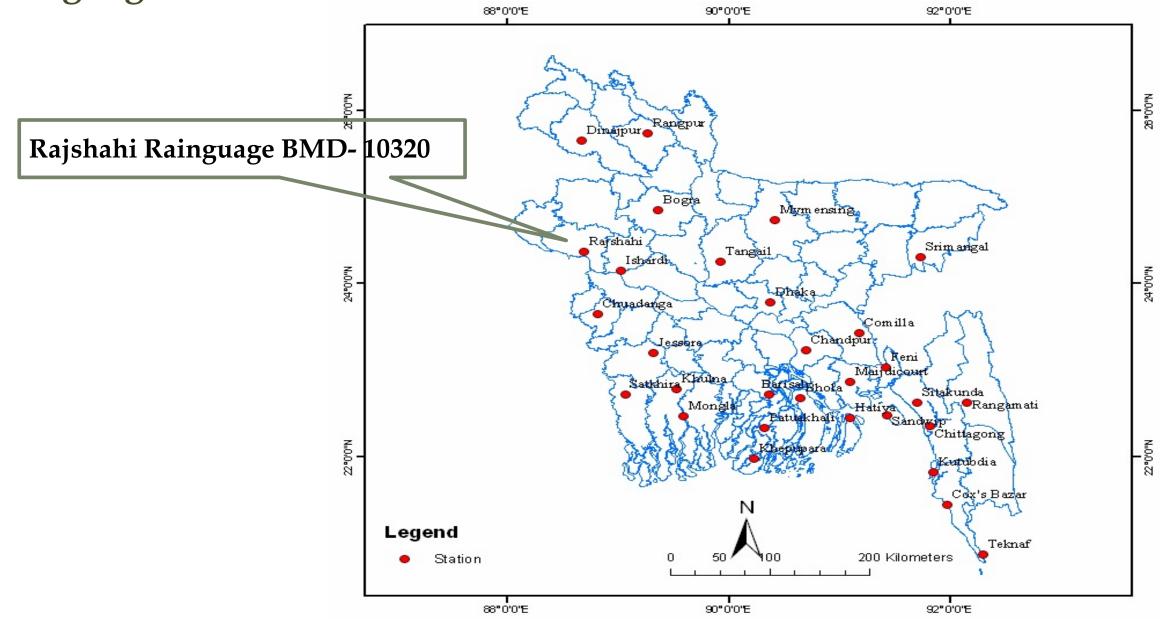
- Collection and Review of Data and Reports
- Assess Hydro-meteorological trend of study area

Survey & Mapping

- Drainage Inventory
- Catchment Delineation and Baseline Hydrology & Hydraulics


Drainage Improvement Projects

- Assess major-minor drainage system using HD Modelling
- Develop structural, non structural interventions


Data Analysis & Recommendations

• Hydrology and hydrodynamic Modelling, Analyze existing and future plans

Flow Diagram

Rain gauge station of BMD

Hydrological Survey

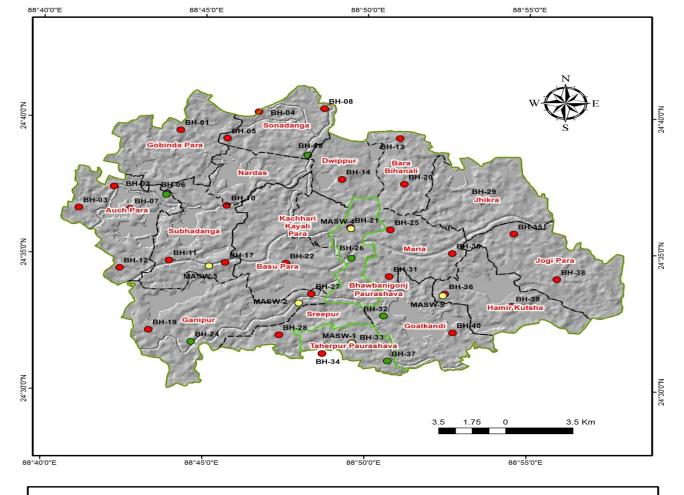
River Cross section survey

Geological and Geo Physical Survey

To ensure the sustainable development, the prime objectives of this work is to determine subsurface soil condition of the project area and evaluating of natural geological and hydro-meteorological hazards such as earthquake, ground failure and integrate the consequence into the design of the infrastructure.

Geological and Geo Physical Survey

- Geomorphologic field study
- Drilling of boreholes and preparation of borehole logs;
- Collection of undisturbed and disturbed soil sample as per standard guide line;
- Conducting standard penetration tests (SPTs);
- Drilling of boreholes and casing by PVC pipe for conducting PS logging test
- Conducting Down-hole Seismic Test (PS Logging) and
- Conducting Multi-Channel Analysis of Surface Wave (MASW).


Geological and Geo Physical Survey

Conducted Test Number

Upazila Name	SPT Boring	Down Hole Seismic (PS Logging) Test	MASW Survey
Bagmara	36	7	5

Geological Work Statuses Till Now

Upazila Name	Laboratory Test	Data Processing and Analysis	Interpretation	All Thematic Maps and Land use Map Production
Bagmara	Completed	Completed	Completed	Completed

Geotechnical and Geophysical Test locations of Bagmara Upazila

Legend

Work Locations

Geotechnical and Geophysical Test

- Downhole Seismic Test (PS Logging)
- Multi-channel Analysis of Surface Wave (MASW)
- Standard Penetration Test (SPT) Drilling
- BAGMARA_UNION_BND
 Upazila Boundary

This map has been produced by ploting the co-ordinates of all the Geotchnical and Geophysical works which was aquired during field investigation. The drilling depth of those boroholes are up to 30m from the existing ground level (EGL).

Coordinate System: BUTM2010 Projection: Transverse Mercator Datum: WGS 1984 false easting: 500,000.0000 false northing: 0.0000 central meridian: 90.0000 scale factor: 0.9996 latitude of origin: 0.0000 Units: Meter

(Source: Field Survey ,2016)

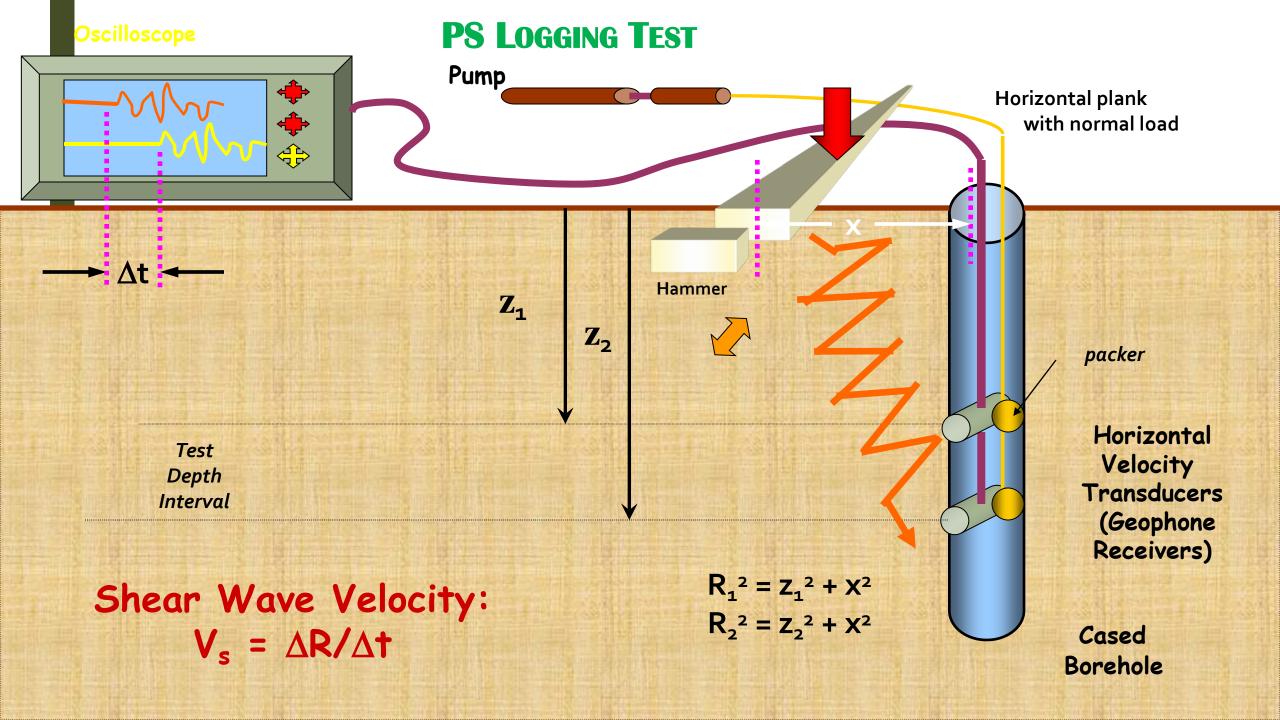
Standard penetration Test boring Data Processing and Log Format representation

GEOTECHNICAL BOREHOLE LOG Exixting ground level: 16.56 Method of Boring: Percussion Ground water level: 2.74m below EGL Boring Dia.:100(mm) Started on: 24.01.2016 Boring Depth: 30.0m Completed on: 24.01.2016 : Urban Development Directorate (UDD) Legend: Location Project: Preparation of Development Plan for Fourteen Upazilas(Package-3 Loction: Ekuria Eid gha Mat, Roypur Union Coordinates Lat-23.82508 Long-88.81804 information SPT blows per 0.3 m penetration Standard Penetration Test Blows on Spoon N-Values Visual Description 10 3 Light Brown to Gray very soft to soft SILT with trace of very fine sand Gray very loose to loose very fine to fine SAND trace silt Layer 5 description/ Gray medium stiff to stiff CLAY 11 Lithology 14 Gray medium dense to dense 10 16 26 medium to fine SAND 12 19 31 5 7 8 22.5 14 24.0 Gray stiff CLAY 8 15 25.5 10 18 27.0 8 9 17 28.5 10 8 18 End of Boring Disturbed Sample(Split Spoon)

Undisturbed Sample(Shelby Tube)

Layer Number and **Thickness**

Soil Resistance/ SPT N Values and Graph


Test details and procedure of down-hole seismic test (PS Logging)

☐ The seismic downhole test aims to measure the travelling time of elastic wave from the ground surface to some arbitrary depths beneath the ground.
The seismic wave was generated by striking a wooden plank by a sledge hammer. The plank was placed on the ground surface at around 1 m in horizontal direction from the top of borehole. The plank was hit separately on both ends to generate shear wave energy in opposite directions and is polarized in the direction parallel to the plank.
☐ The shear wave emanated from the plank is detected by a tri-axial geophone. The geophone was lowered to 1 m below ground surface and attached to the borehole wall by inflating an air bladder.

Then, the measurements were taken at every 1 m interval until the geophone was lowered to 30

m below ground surface. For each elevation, 3 records were taken and then used to calculate the

shear wave velocity.

DOWN HOLE SEISMIC (PS LOGGING) TEST DATA PROCESSING AND **REPRESENTATION**

Tested Date Location Test Id Coordinate Operator	: PS-5 (BH-22) : Latitude 23.	g Centre, Brahmonkanda, Sreeaungon, Faridpur Sadar 5869 Longitude 89.81373 nents Downhole Seismic system	Source : 7kg Sledge Hammer Downhole Receiver : Tri-axial Geophone Recording Equipment : Freedom Data PC Borehole Information : Grouted Cased Casing Diameter : 75mm PVC Casing
Depth (m) Form EGL	S-wave Velocity	Graphical Representation of S-wave Velocity	Data Acquisition Procedure
-1	51		Oscillarcope PS Logging Test
-2	115	0 7 1	Pump Horizontal plank
-3	129	日本 1 1 1 1 1 1 1 1 1	with normal load
-4	121		
-5	122	经等差比划 (重)线	
-6	199	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$\rightarrow \Delta t$ Hammer
-7	112	The state of the s	Z2 A Constant
-8	200		
-9	185		7est Horizontal Velocity
-10	119	-10	Interval Transducers
-11	165		(Geophone Receivers)
-12	124		Shear Wave Velocity: $R_1^2 = z_1^2 + x^2$ $R_2^2 = z_2^2 + x^2$ Cased
-13	171		$V_s = \Delta R/\Delta t$ $R_2^2 = Z_2^2 + X^2$ Cased Borehole
-14	184		
-15	125	(E) -15 -	
-16	179	de la	
-17	154	PER PAGE	
-18	314		
-19	124	-20	
-20	135		
-21	331	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
-22	310		
-23	170	-25 -	

-30

200

400

Vs (m/s)

600

800

Downhole Seismic Test Data Acquisition

-24

-25

-26

-27

-28

-29

Average Vs 30m = 142m/sec

104

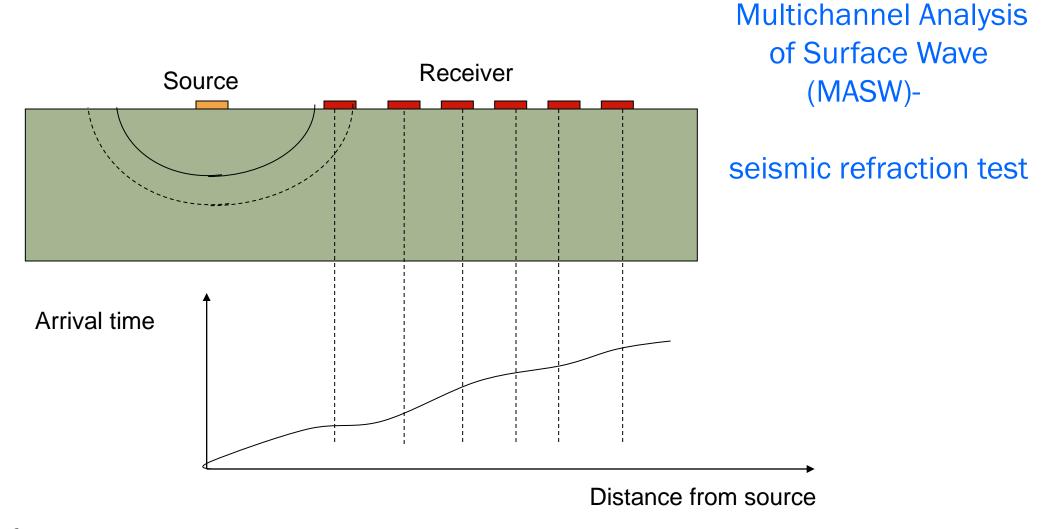
156

124

145

167

TEST DETAILS AND PROCEDURE OF MULTI-CHANNEL ANALYSIS OF SURFACE WAVE (MASW)

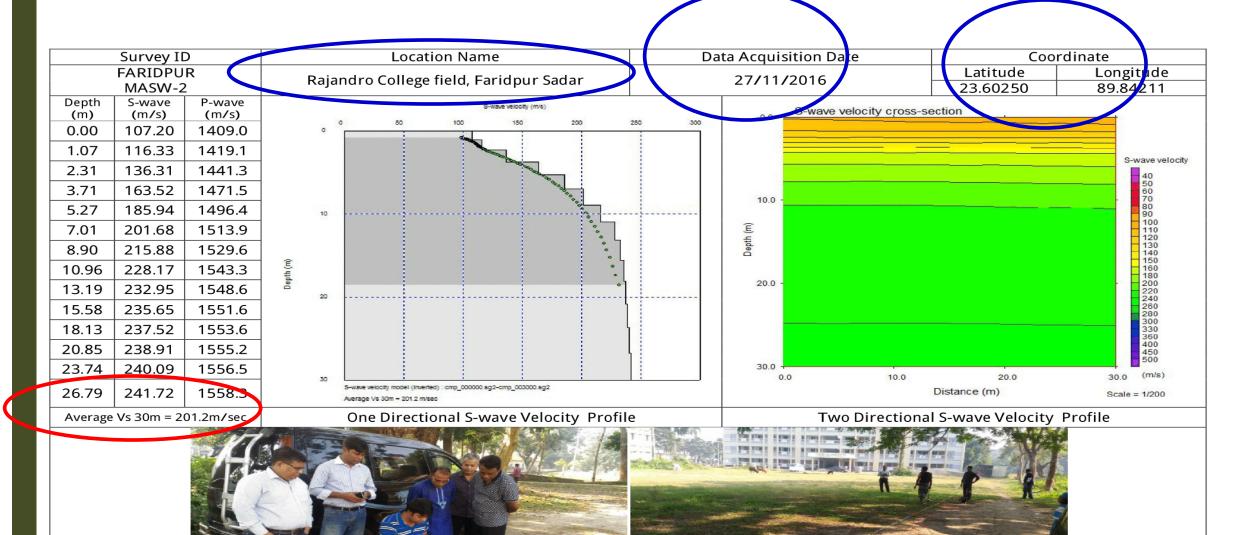

MASW is a seismic surface method, widely used for subsurface characterization and is increasingly being applied for seismic microzonation and site response studies (Anbazhagan and Sitharam, 2008).

It is also used for the geotechnical characterization of near surface materials (Park and Miller, 1999; Xia et al., 1999; Miller et al., 1999; Anbazhagan and Sitharam, 2008).

MASW is used to identify the subsurface material boundaries, spatial and depth variations of weathered and engineering rocks (Anbazhagan and Sitharam, 2009).

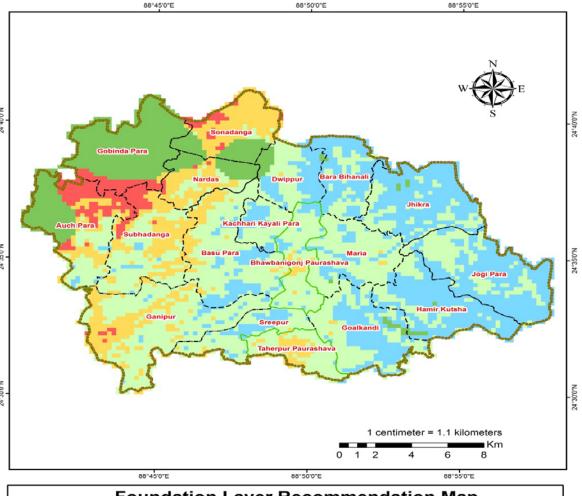
We have used the MASW system consisting of 12 channels Geode seismograph with 12 vertical geophones of 10 Hz capacity.

FIELD MEASUREMENT OF MASW

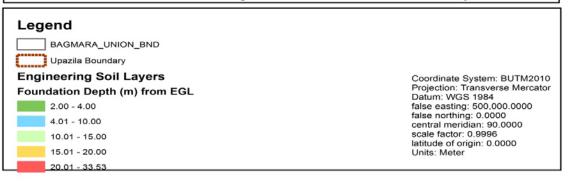


- surface wave test

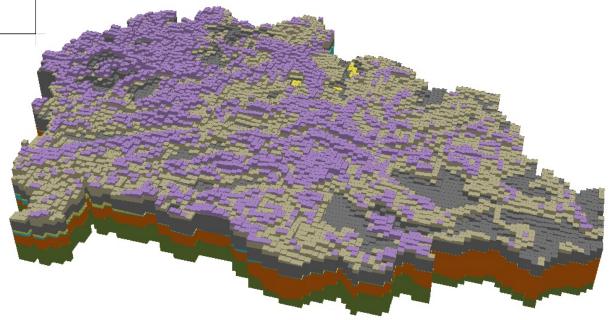
FIELD DATA ACQUISITION PARAMETERS


Seismic refraction (MASW) Test				
Number of channels	12			
Geophone spacing	3m			
Array length	33m			
Sampling rate	1ms			
Record length	2 sec			
Natural frequency of Geophone	10 Hz			
Source	8 kg hammer			
Shot number	13 points, 11 between geophones and 2 outside of measuring line			

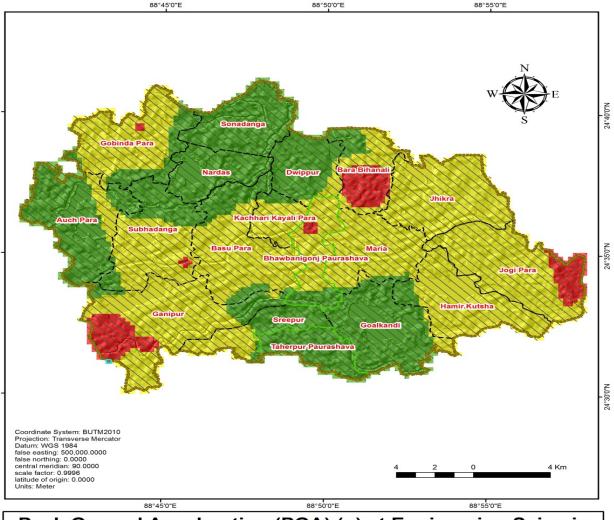
MASW SURVEY DATA PROCESSING AND REPRESENTATION



FOUNDATION LAYER RECOMMENDATION MAP OF BAGMARA UPAZILA

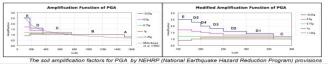


Foundation Layer Recommendation Map

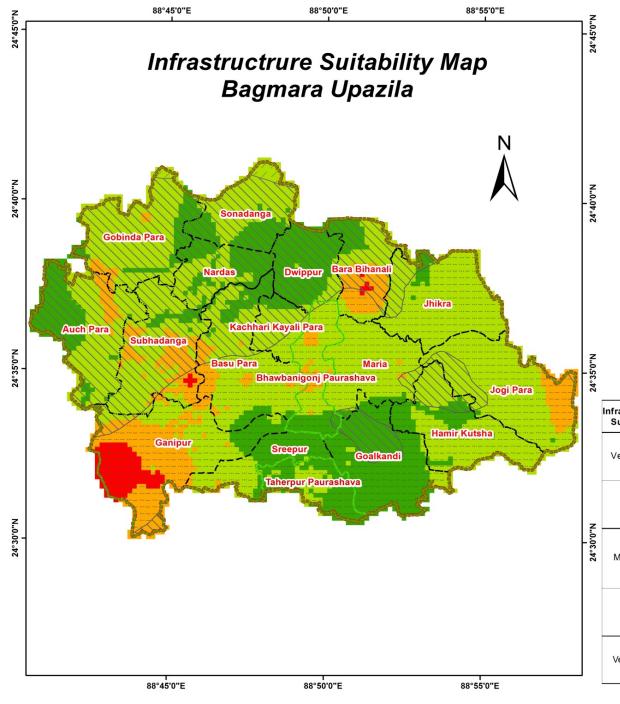


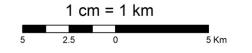
GIS BASE SUBSURFACE LITHOLOGICAL T 3D MODEL OF BAGMARA UPAZILA

Lithological description	SPT N Value Range
Layer 1: Brownish Grey very Soft to Stiff SILT with very fine sand	2 to 11
Layer 2: Light Brown to Grey very Loose to medium Dense very fine to fine SAND with silt	2 to 20
Layer 3: Light Grey to Dark Grey very Soft to very Stiff SILT with clay	2 to 22
Layer 4: Redish Brown to Brown medium Stiff to Stiff SILT with clay	4 to 15
Layer 5: Brown to Light Grey medium Dense to Dense fine to very fine SAND with silt	9 to 35
Layer 6: Light Brown medium Dense to very Dense medium to fine SAND with silt	10 to 68
Layer 7: Light Grey Dense to very Dense medium to coarse/fine SAND little silt	33 to 84


Geological Works (Probabilities Seismic Hazard Assessment)

Peak Ground Acceleration (PGA) (g) at Engineering Seismic Ground Surface (Depth upto 30m) Corresponding to a Probability of Exceedance of 10% in 50 years


This map was produced by multiplying PGA values with Amplification factors corresponded for different soil type. as the Vs is within 168-244m/s so soil was classified as (E,D5,D4,D3). thus the amplification factor was also modified. Spectral Accelaration (PGA) (g) at Engneering Ground Surface(Depth upto 30) corresponging to proballility of exceedance of 10% in 50 year was count for each grid.


Modified Mercalli Intensity Scale

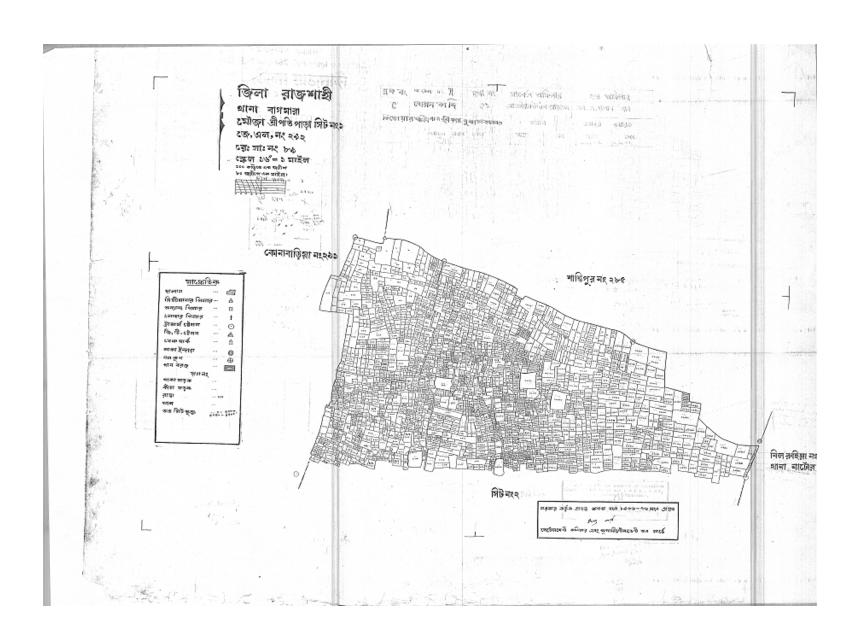
PGA (g)	Intensity	Shaking	Description/Damage
< 0.001	I	Not felt	Not felt except by a very few under especially favorable conditions.
0.0017 - 0.014	II	Weak	Felt only by a few persons at rest, especially on upper floors of buildings.
0.0017 - 0.014	III	Weak	Felt quite noticeably by persons indoors, especially on upper floors of buildings. Many people do not recognize it as an earthquake. Standing motor cars may rock slightly. Vibrations similar to the passing of a truck. Duration estimated.
0.014 - 0.039	IV	Light	Felt indoors by many, outdoors by few during the day. At night, some awakened. Dishes, windows, doors disturbed; walls make cracking sound. Sensation like heavy truck striking building. Standing motor cars rocked noticeably.
0.039 - 0.092	V	Moderate	Felt by nearly everyone; many awakened. Some dishes, windows broken. Unstable objects overturned. Pendulum clocks may stop.
0.092 - 0.18	VI	Strong	Felt by all, many frightened. Some heavy furniture moved; a few instances of fallen plaster. Damage slight.
0.18 - 0.34	VII	Very strong	Damage negligible in buildings of good design and construction; slight to moderate in well-built ordinary structures; considerable damage in poorly built or badly designed structures; some chimneys broken.
0.34 - 0.65	VIII	Severe	Damage slight in specially designed structures; considerable damage in ordinary substantial buildings with partial collapse. Damage great in poorly built structures. Fall of chimneys, factory stacks, columns, monuments, walls. Heavy furniture overturned.
0.65 - 1.24	IX	Violent	Damage considerable in specially designed structures; well-designed frame structures thrown out of plumb. Damage great in substantial buildings, with partial collapse. Buildings shifted off foundations.
> 1.24	Х	Extreme	Some well-built wooden structures destroyed; most masonry and frame structures destroyed with foundations. Rails bent.

Suitabil Infrastructure Bagm

Legend Infrastructure Suitability BAGMARA_UNION_BND Class Upazila Boundary Very Good Surface Geology Good Map Unit Moderate Alluvial silt Alluvial silt and clay Marsh clay and peat

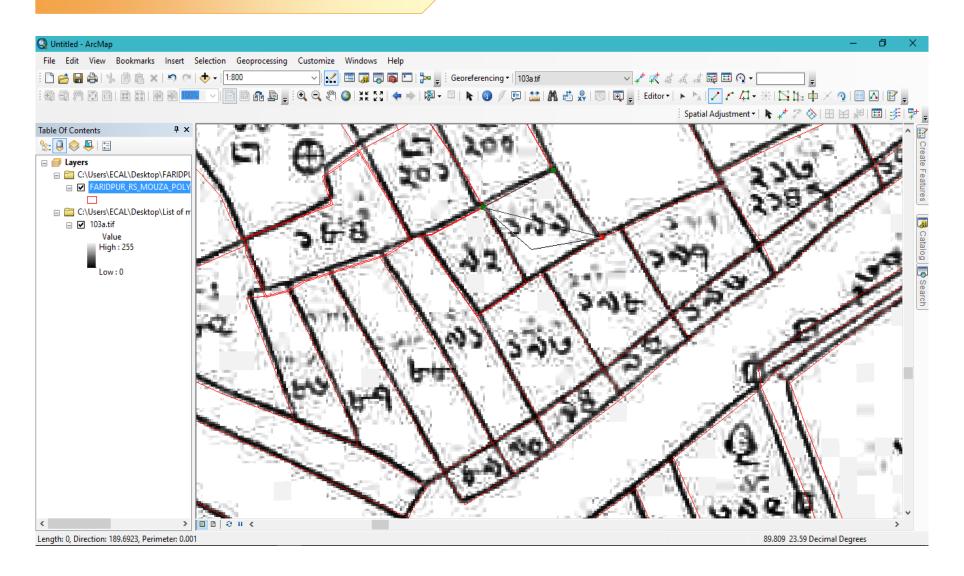
Infrastructure Suitability	Infrastructure Foundation Suitability	Suggested Land Use Suitability	
Very Good	4-6 story light infrastructure is suitable with a foundation depth of up to 2 m. Large and tail infrastructure requires pile foundation placed on Soil layer no 3 or 5.	Commercial area Residential area Industrial zone	
Good	4-6 story light infrastructure is suitable in Madhupur Clay. General foundation depth is within 5 m, at places higher Large and tall infrastructure requires pile foundation placed on layer no 3 or 5	Commercial area Residential area Industrial zone	
Moderate	4-6 story light infrastructure requires on-site subsoil investigation and proper foundation design. Deep pile foundation is needed for large and tail infrastructure	Industrial zone Residential area Commercial area Agricultural Zone Park and Recreation	
Poor	Detail subsoil investigation and proper foundation design is required for all types of infrastructure, due to low bearing capacity with hazard potential.	Agricultural zone Flood flow zone Wetland Rural settlement Park and Recreation	
Very Poor	Detail subsoil investigation for deep pile foundation is essential, due to very low bearing capacity and high hazard potential. Shallow foundation is not preferred.	Agricultural zone Flood flow zone Wetland Rural settlement Park and Recreation	

Downhole Seismic Test (PS Logging) Activities at Bagmara



Findings

■ This geological investigations has been given us a clear idea about the geohazard status of particular landscape where newly urban developing activities or any other mega infrastructure project is going on and this mentioned investigation also gives idea about the vulnerability of existing build up infrastructure of a particular area.

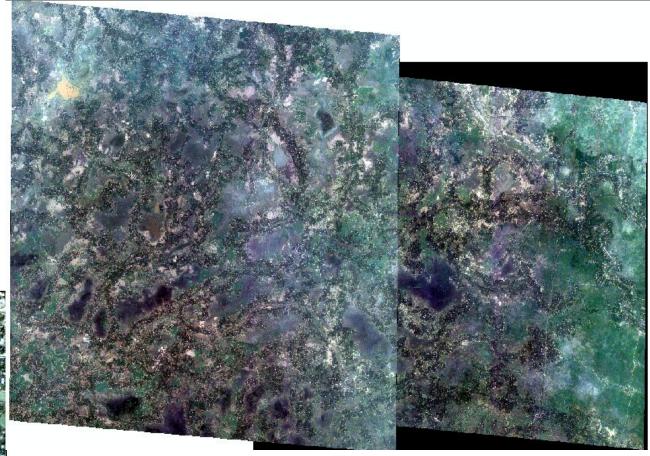

Based on these results, proper management techniques as well as other necessary adaptation process could be addressed before or after the development activities in the studied area. It is to be mentioned that the long-term maintenance cost will be reduced and the developed structure will withstand against the potential natural hazards if the infrastructures are built following the risk informed physical land-use plan.

Mouza Map Collection, Scanning and Digitization

Mouza Map Collection, Scanning and Digitization

DIGITIZATION OF MOUZA MAPS

Processing of Satellite Image


Tiles

Merged satellite image

Pan-sharpen Image

Mouza Map Collection, Scanning and Digitization

GEOREFERENCED MOUZA MAPS

Bench Mark (BM) Pillar Installation

Construction of and Installation BM Pillars

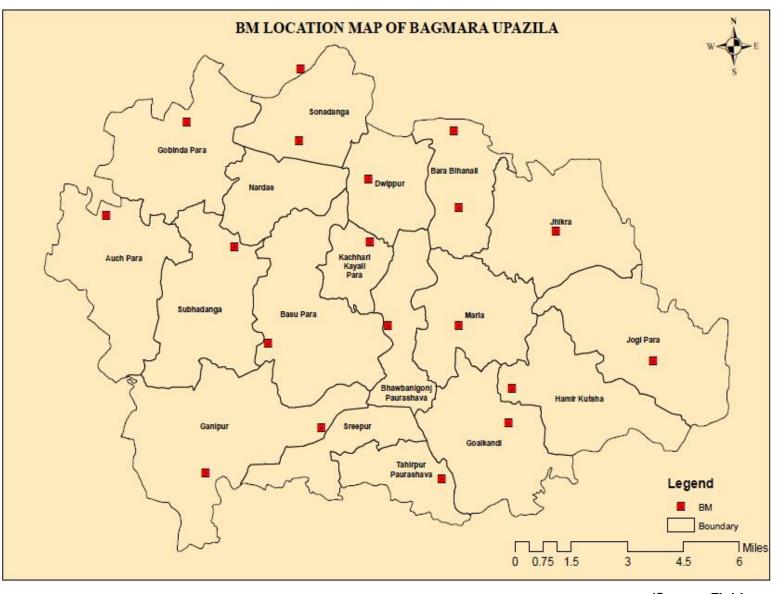
Marking of BM Pillars

(Source: Field Survey ,2016)

Bench Mark (BM) Pillar Installation

REFERENCE BM PILLAR

RTK-GPS OBSERVATIONS ON BM PILLARS



(Source: Field Survey, 2016)

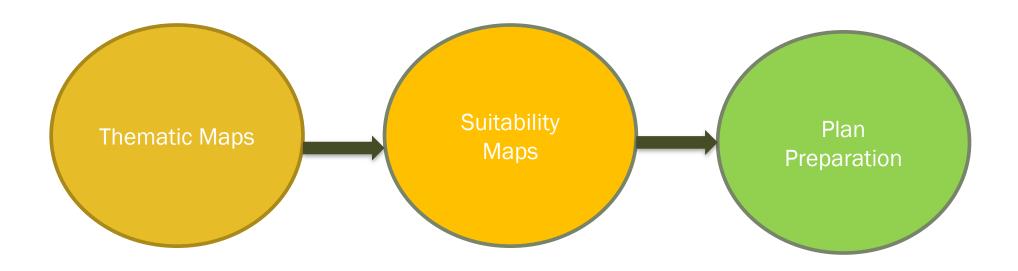
Bench Mark (BM) Pillar Installation

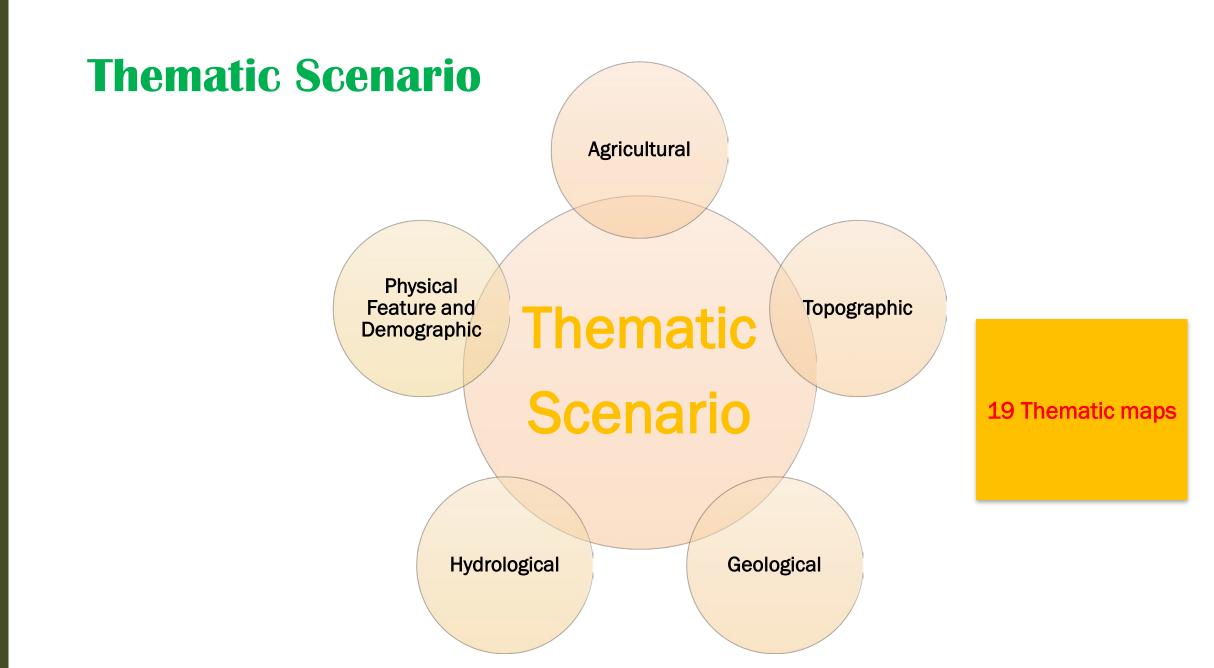
Locations of Installed BM Pillars

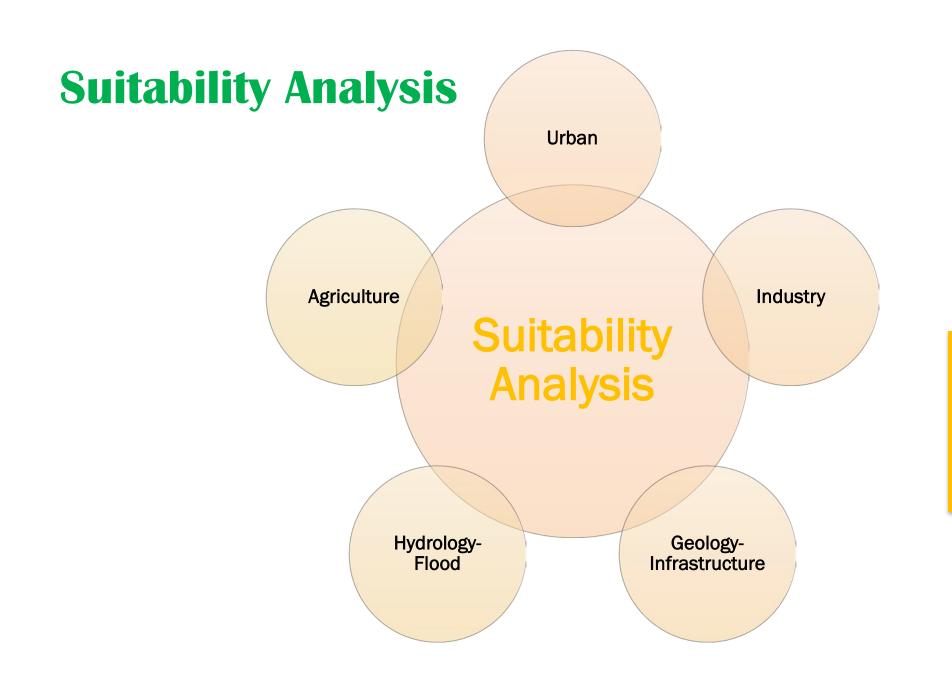
Name of Upazil a	Const ructio n of BM Pillar	Estab lisme nt of BM Pillar	GC P
Bagma ra	18	18	22

(Source: Field Survey, 2016)

Physical Feature Survey

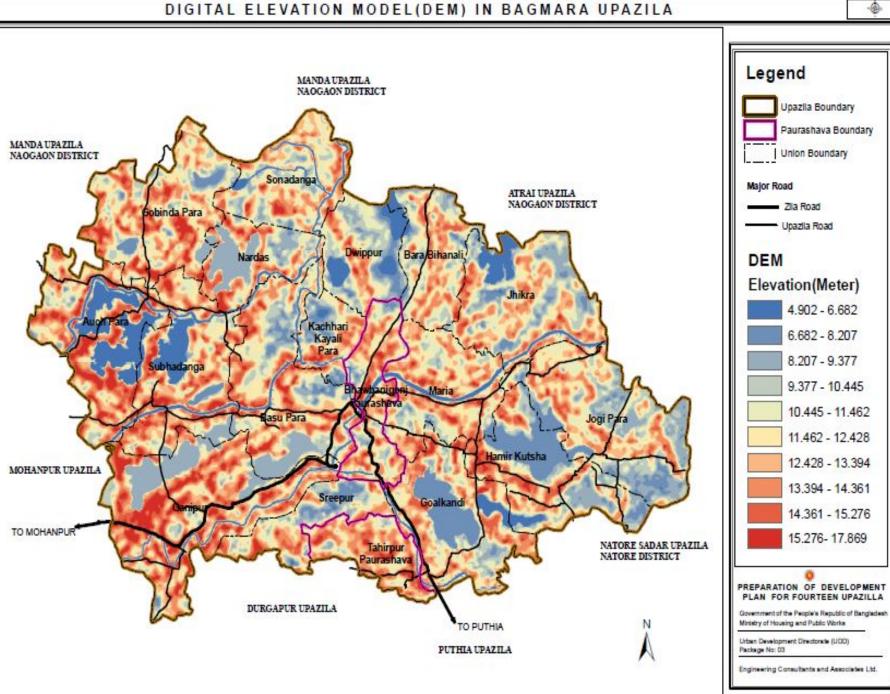


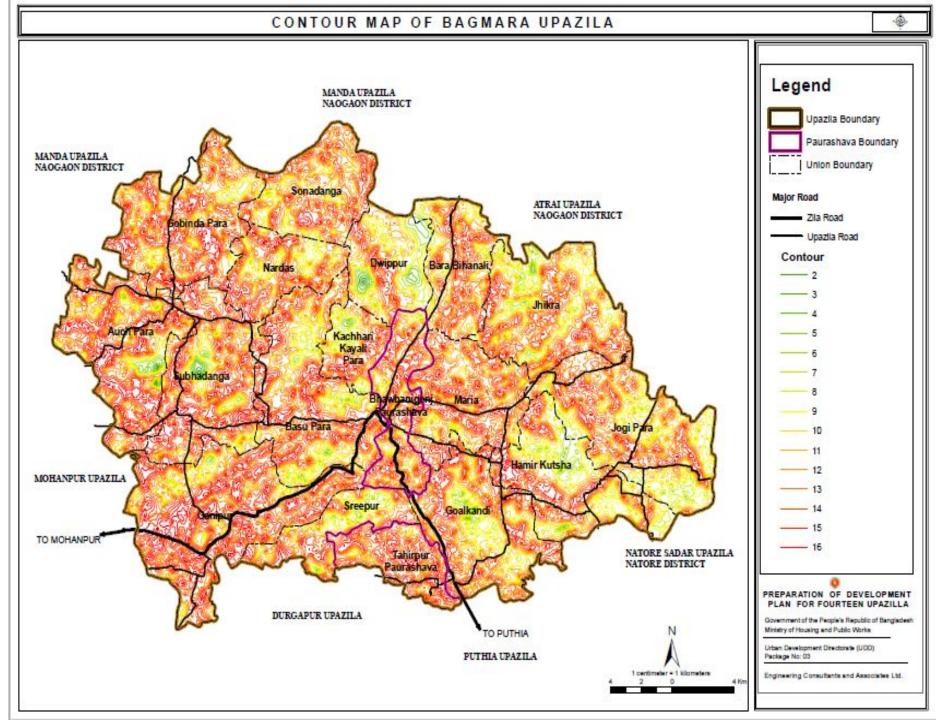



Field Survey Instruction

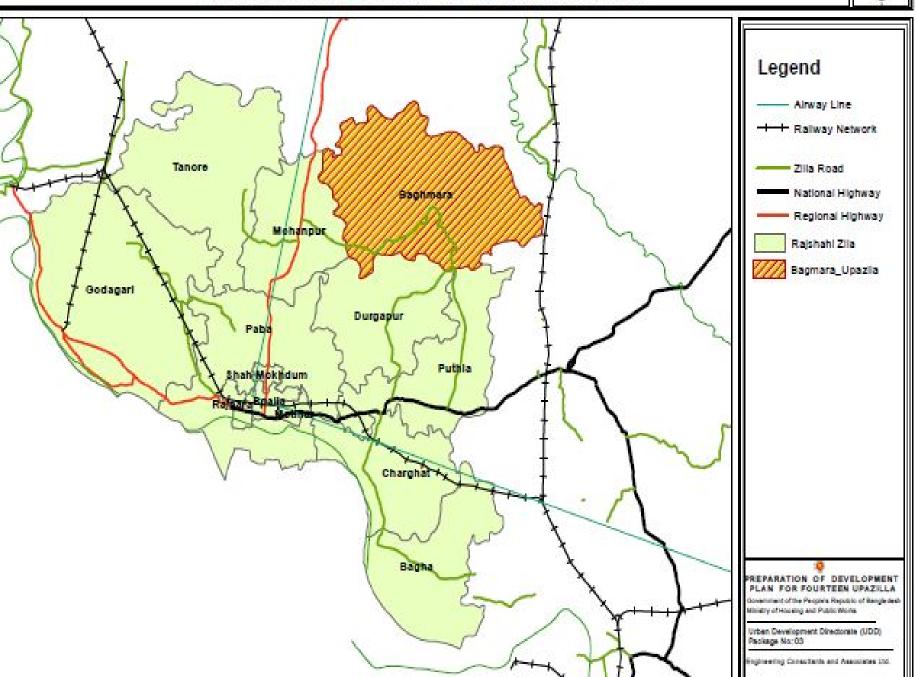
Planning Stage

Plan Preparation Process

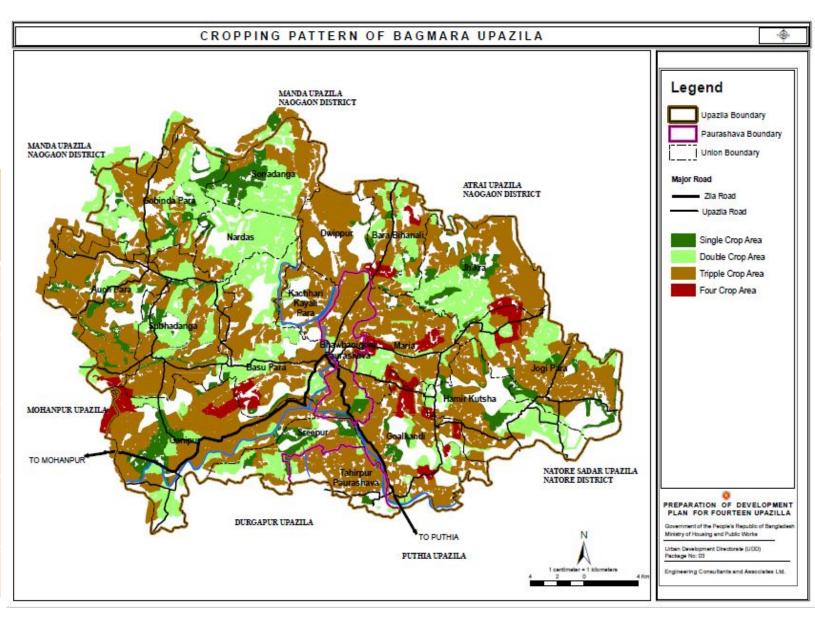


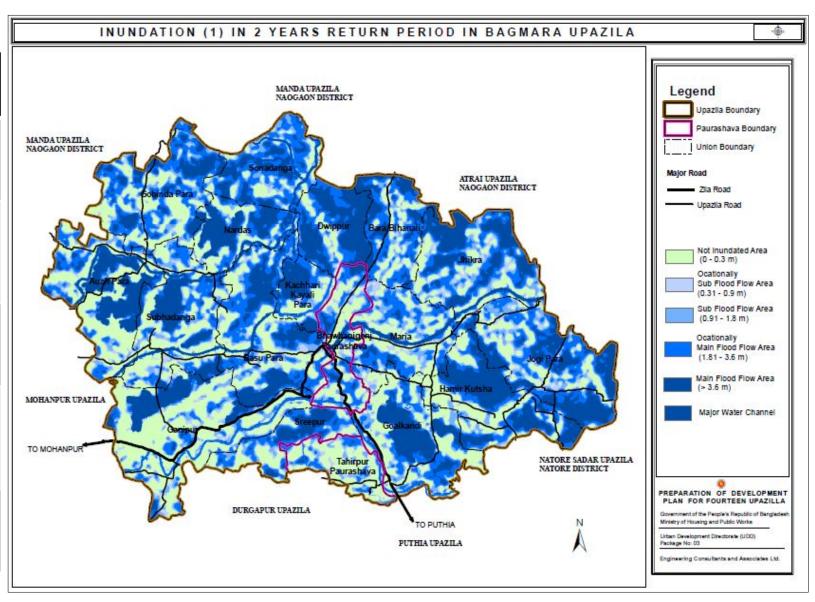

7 Suitability maps

Digital Elevation Model (DEM)

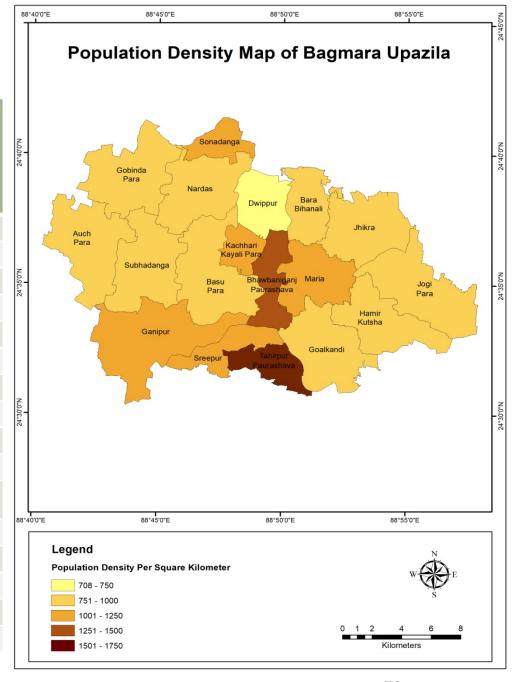

Contour Map

REGIONAL LINKAGE MAP OF BAGMARA UPAZILA

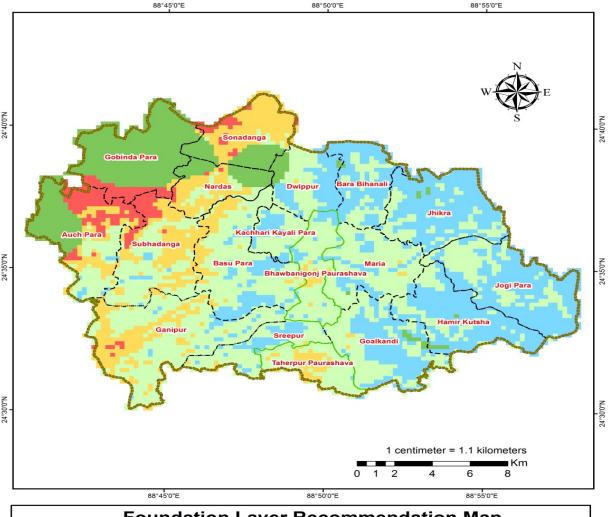



Agricultural Cropping Intensity Map

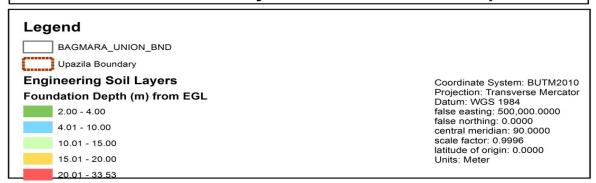
Cropping	Area in	Area in	Percentag
Pattern	Acre	Sq.km	e
Single	7790.02	31.5251	12.85%
Cropping	3111	05	
Double	15651.7	63.3405	25.81%
Cropping	8868	42	
Triple	34876.8	141.141	57.51%
Cropping	4722	593	
Four Cropping	2324.32 1155	9.40619	3.83%
Total	60642.9 8017	245.413 434	100%

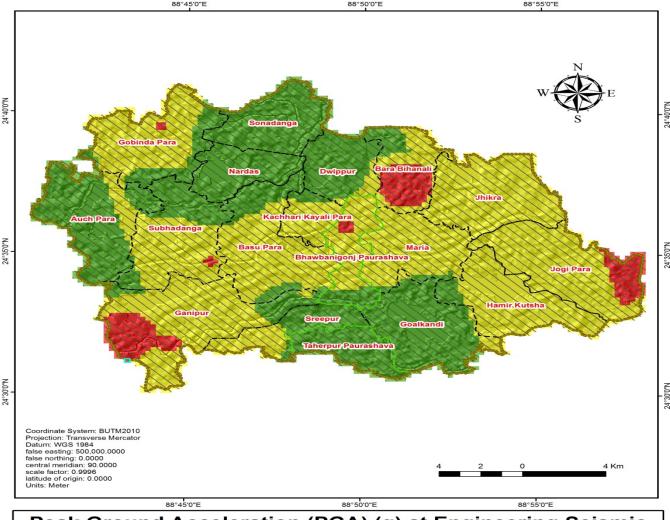

Flood Inundation Map at 2 years Return Period

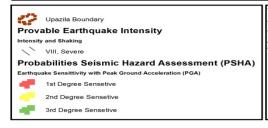
Flooded Land Category	Water Depth	Percenta ge area	Remarks
1st Degree Flooded area	0-0.3m	28%	Not Inundated Area
2nd Degree Flooded area	0.31- 0.9m	9%	Ocationally Sub Flood Flow Area
3rd Degree Flooded area	0.91- 1.8m	13%	Sub Flood Flow Area
4th Degree Flooded area	1.81- 3.6m	22%	Ocationally Main Flood Flow Area
5th Degree Flooded area	>3.6m	27%	Main Flood Flow Area

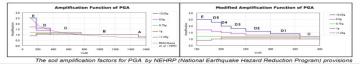


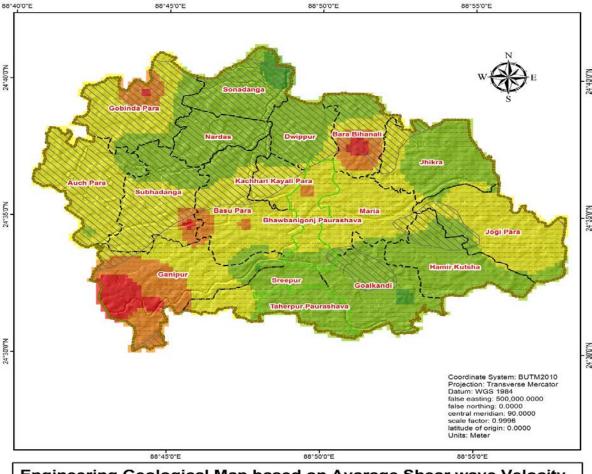
Population Density (2035) Map of Bagmara Upazila

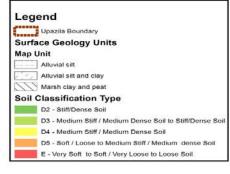

Unions	Base Year Population (BBS,2011)	Projected Population (Consider Medium Growth Rate, 1.28%) 2035
Auch Para	26685	36211
Bara Bihanali	12571	17058
Basu Para	26943	36561
Dwippur	9852	13369
Goalkandi	24275	32940
Gobinda Para	22707	30813
Ganipur	36469	49487
Hamir Kutsha	19817	26891
Jhikra	22026	29889
Jogipara	24830	33693
Kachari Kayali Para	7509	10189
Maria	19487	26443
Nardas	19528	26499
Sonadanga	8684	11784
Sreepur	11789	15997
Shubhadanga	25593	34729


Foundation Layer Map of Bagmara Upazila

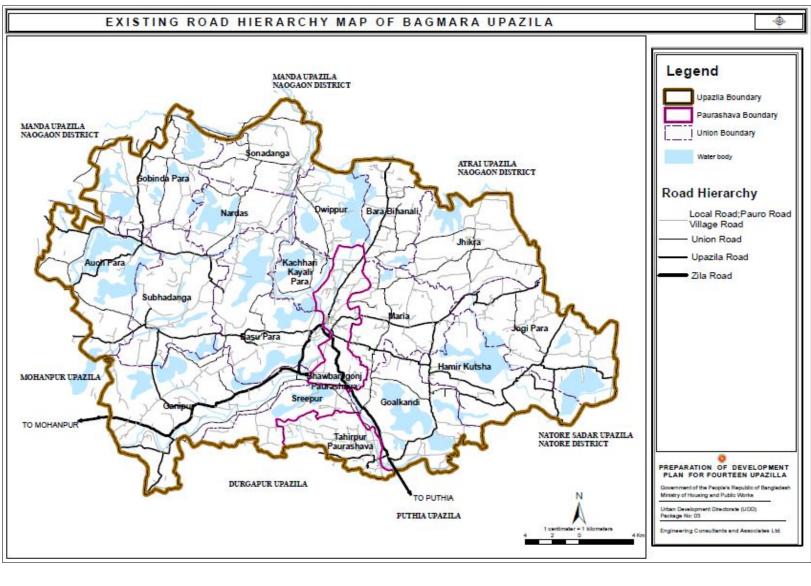

Foundation Layer Recommendation Map


Peak Ground Acceleration Map of Bagmara Upazila

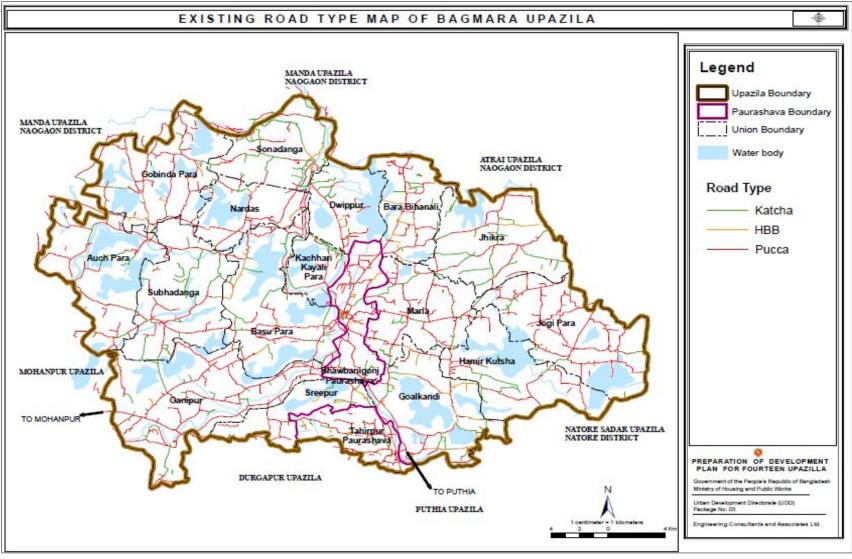

Peak Ground Acceleration (PGA) (g) at Engineering Seismic Ground Surface (Depth upto 30m) Corresponding to a Probability of Exceedance of 10% in 50 years


This map was produced by multiplying PGA values with Amplification factors corresponded for different soil type. as the Vs is within 168-244m/s so soil was classified as (E,D5,D4,D3). thus the amplification factor was also modified. Spectral Accelaration (PGA) (g) at Engneering Ground Surface(Depth upto 30) corresponging to probalility of exceedance of 10% in 50 year was count for each grid.

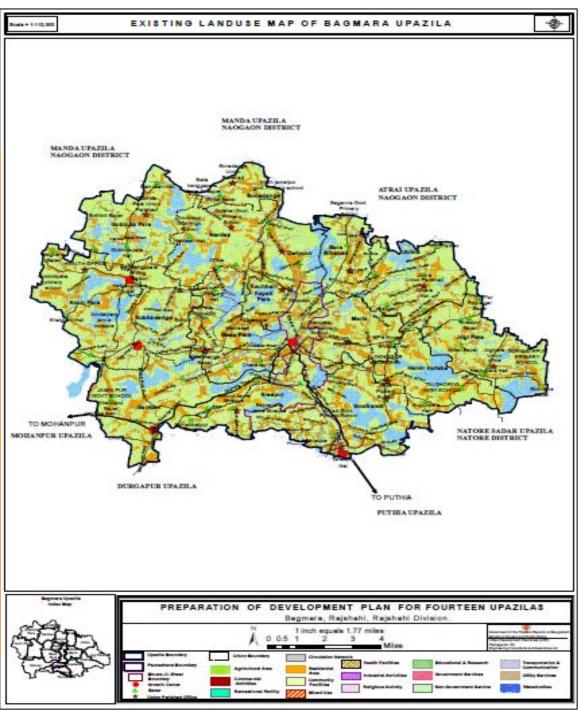
Shear Wave Velocity Map of Bagmara Upazila


Engineering Geological Map based on Avarage Shear wave Velocity (upto30m)

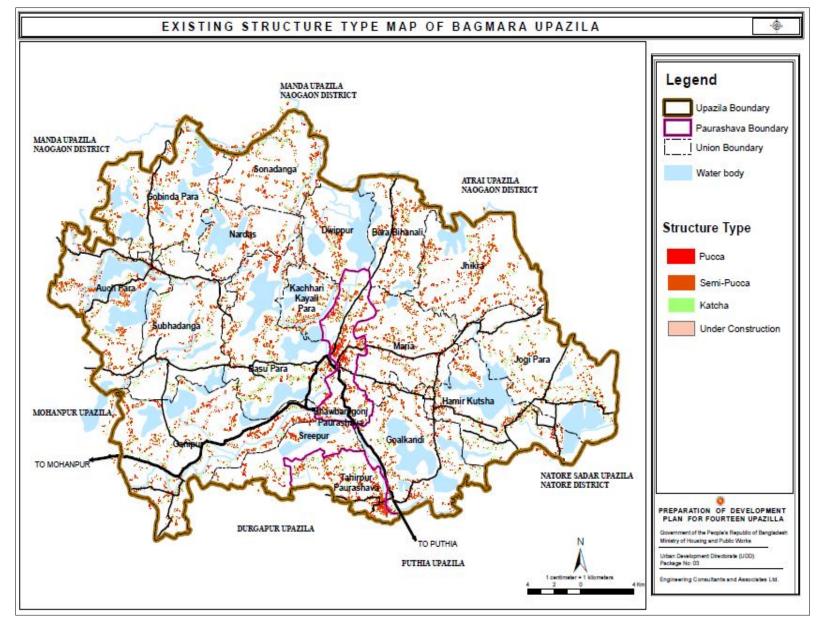
Class	Sections description		(m/sec)	in different B	lore hole. After	erward it was cli	velocity of the soil la assified by their velo
Α.	HARD ROCK Eastern United States only	1500					od provided by NEH rd Reduction Progra
В	ROCK	760	1500				r wave velocity of so
c	VERY DENSE SOIL AND SOFT ROCK Unstrained shear strength u.> 2000pd (u.= 100kPa) or N = 50 blowsft	360	760				modified as follows.
D	STEF SOILS STEF SOI with undrained shear strength 1 000psl = u, = 2000psl (50KPa > u, < 100KPa) or 15 = N = 50 blowsitt	180	360	Ground Class	V _{ab0} 360 • 760 m/sec		Soil Type Hard Soil and Soil rock
r	Profile with more than 10 ft (2m) of soft clay defined as sot with plasticity index P1 = 20, moisture content w > 40% and undrained shear strength u < 100 0pst of Streat (N = 15 blows) = 15 blows (N = 15 blows)		180	D1 D2 D3	300 - 360 m/sec 250 - 300 m/sec	Stiff / Dense t Stiff Medium Stiff to Stiff	to very dense Hard Soil Dense Soil Mediam Dense to Dense Soil Mediam Dense Soil
	SOILS REQUIRMS STE SPECIFIC EVALUATIONS 1. Soils vulnerable potential failures or collapse under seismic loading: e.g., squefatte soils, quick and highly sensitive days, collapse weakly connected soils. 2. Peats and/or highly organic clays: (30t (3m) or thicker layer) 3. Very high plasticity clays:			Scale:		Very Soft to Soft	iam Stiff Medium Dense Soil Very Lorse to Loose Soil ne soits appned in this stud lometers
	(25ft (8m) or thicker layer with plasticity index > 75) 4. Very thick soft/medium stiff clays: (120ft (30m) or thicker layer) case based on V. — according to NEFR® (Nati			4	2	0	4 Km


Road Hierarchy Map of Bagmara Upazila

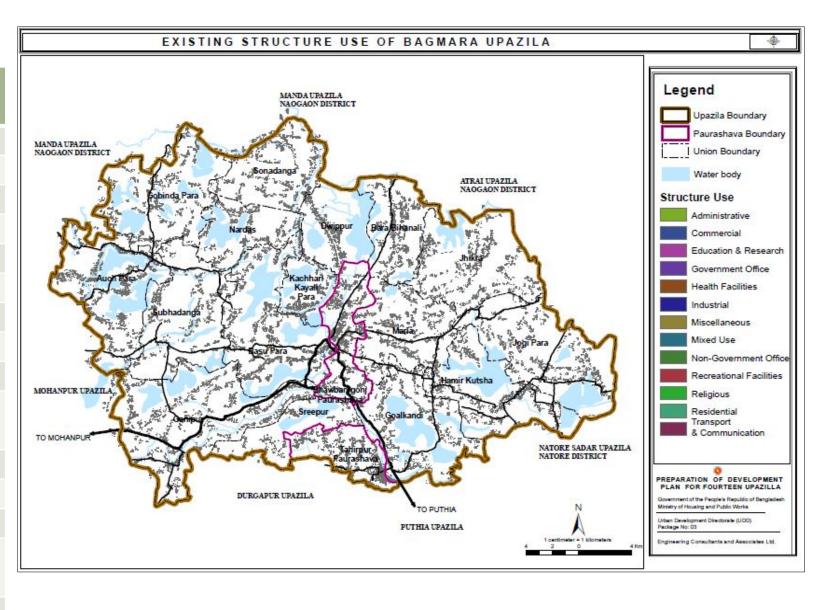
Road Hierarchy	Length in Km.	Percentag e
Local Road	14.07	2.03%
Pouro Road	41.75	6.02%
Union Road	152.14	21.93%
Upazila Road	123.95	17.87%
Village Road	338.57	48.80%
Zilla Road	23.35	3.36%
Total	693.83	100.00%


Existing Road Type Map of Bagmara Upazila

Road Type	Length in Km.	Percent age
Katcha	166.96	24.15%
НВВ	45.32	6.55%
Pucca	479.06	69.30%
Total	691.34	100%

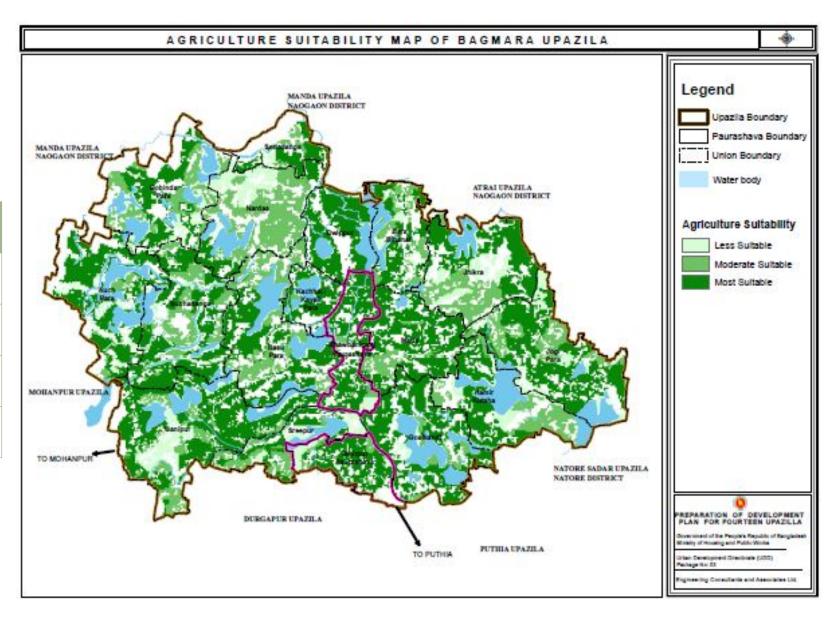

Existing Land Use Map of Bagmara Upazila

Landuse	Area in Acres	Area in Sq.km
Administrative	26.46	0.107072
Agricultural	58611.48	237.192252
Commercial	164.12	0.664175
Community Facilities	0.39	0.001594
Education & Research	61.28	0.247976
Health Facilities	2.63	0.01066
Industrial	6.96	0.028185
Miscellaneous	0.50	0.002008
Mixed Use	14.86	0.060136
NGO	0.51	0.002046
Recreational Facilities	0.14	0.00056
Religious	8.55	0.034616
Residential	16316.24	66.029498
Utility Facilities	0.91	0.003689
Waterbodies	15502.78	62.737509
Circulation Network	495.50	2.00523
Total	91213.32	369.13


Structure Type Map of Bagmara Upazila

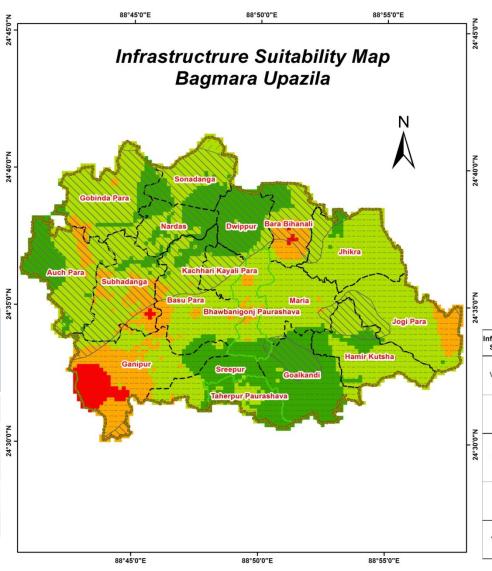
Structure	No. of	Percent
Type	Structures	age
Katcha	17055	27.33%
Semi Pucca	39703	63.62%
Pucca	5604	8.98%
Under	40	
Construction	48	0.08%
Total	62410	100%

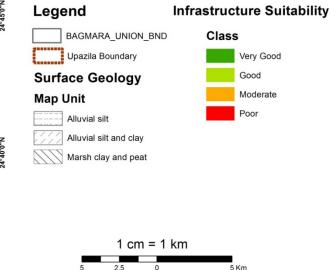
Structure Use Map of Bagmara Upazila


	No. of
Structure Use	Structures
Administrative	123
Agricultural	70
Commercial	1982
Community Facilities	2
Education and Research	220
Health Facilities	22
Industrial	34
Miscellaneous	37
Mixed Use	60
Non-Government	
Services	21
Recreational Facilities	2
Religious	97
Residential	59723
Transportation	
Facilities	9
Utility Facilities	8

Suitability Maps

Agricultural Suitability Maps

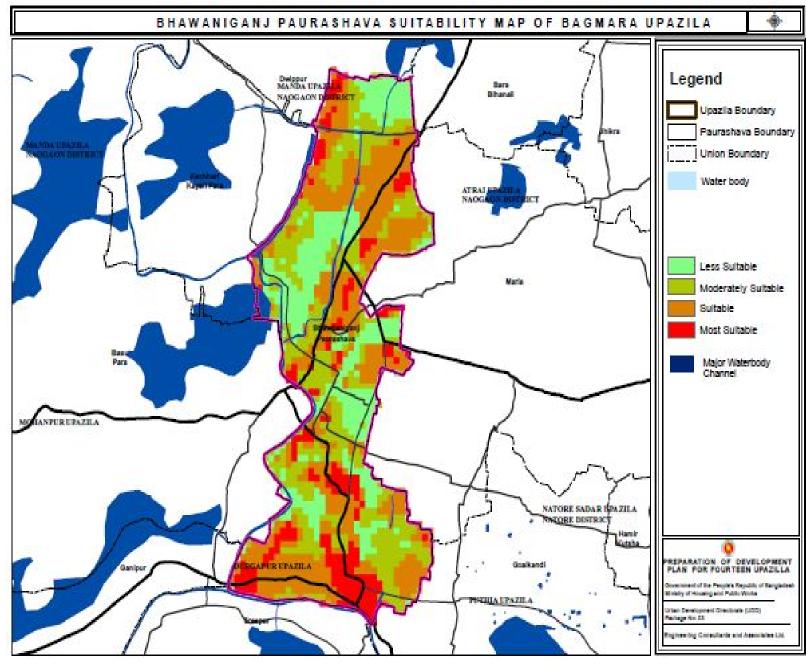

Agricultural Suitability			
Criteria Weightage			
Cropping Intensity 50			
Water Depth 30			
DEM	20		



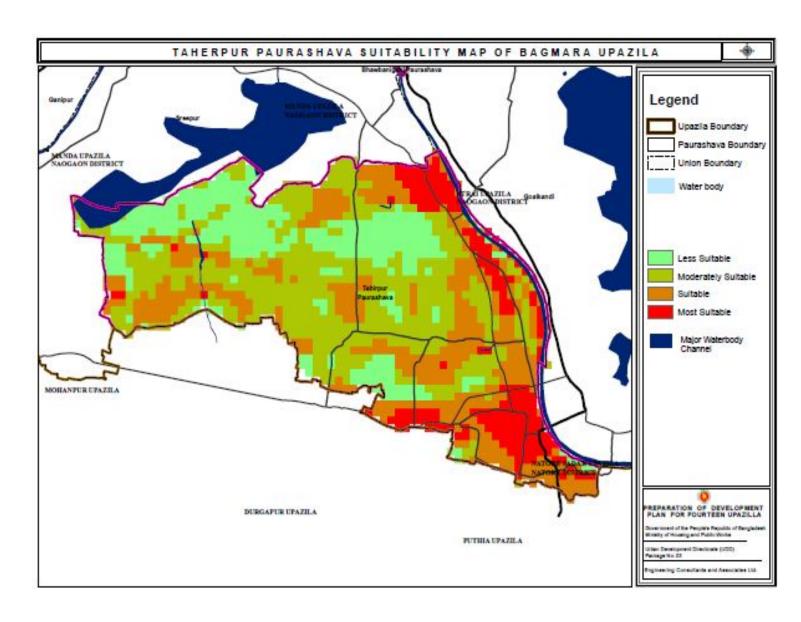
Infrastructural Suitability Maps

Infrastructure Suitability		
Criteria Weightage		
PGA	30	
Foundation		
Depth 40		
Shear Wave	30	

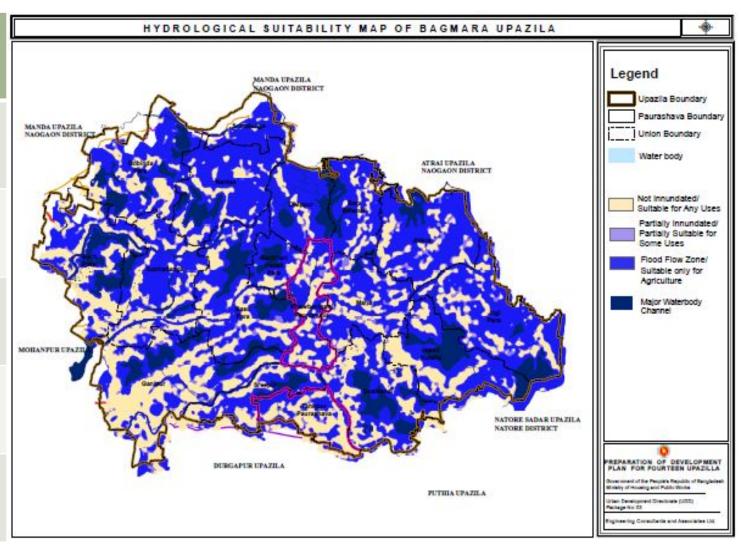
Infrastruct ure Category	Area(Sq. Km)	% of Area
Good	228.88	58.98%
Moderate	46.00	11.85%
Poor	8.06	2.08%
Very Good	105.13	27.09%
Total	388.06	100%



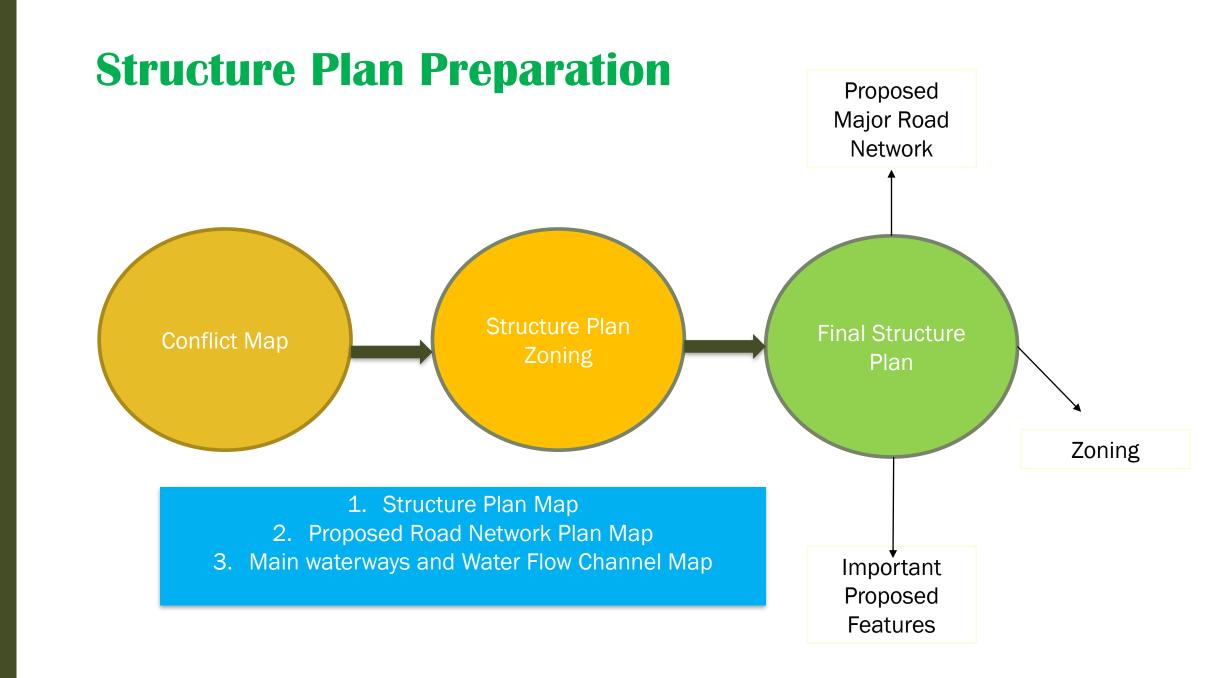
 frastructure Suitability	Infrastructure Foundation Suitability	Suggested Land Use Suitability
	infrastructure requires pile foundation placed on Soil	Commercial area Residential area Industrial zone
Good	4-6 story light infrastructure is suitable in Madhupur Clay. General foundation depth is within 5 m, at places higher Large and tall infrastructure requires pile foundation placed on layer no 3 or 5	Commercial area Residential area Industrial zone
Moderate	4-6 story light infrastructure requires on-site subsoil investigation and proper foundation design. Deep pile foundation is needed for large and tail infrastructure	Industrial zone Residential area Commercial area Agricultural Zone Park and Recreation
Poor	design is required for all types of infrastructure, due to	Agricultural zone Flood flow zone Wetland Rural settlement Park and Recreation
Very Poor	Detail subsoil investigation for deep pile foundation is essential, due to very low bearing capacity and high hazard potential. Shallow foundation is not preferred.	Agricultural zone Flood flow zone Wetland Rural settlement Park and Recreation


Urban Suitability Maps

Urban Suitability		
Criteria	Weightage	
DEM	20	
Major Roads	25	
Infrastructure		
Suitability	10	
1/Hydrological		
Suitability	20	
1/Agricultural		
Suitability	25	

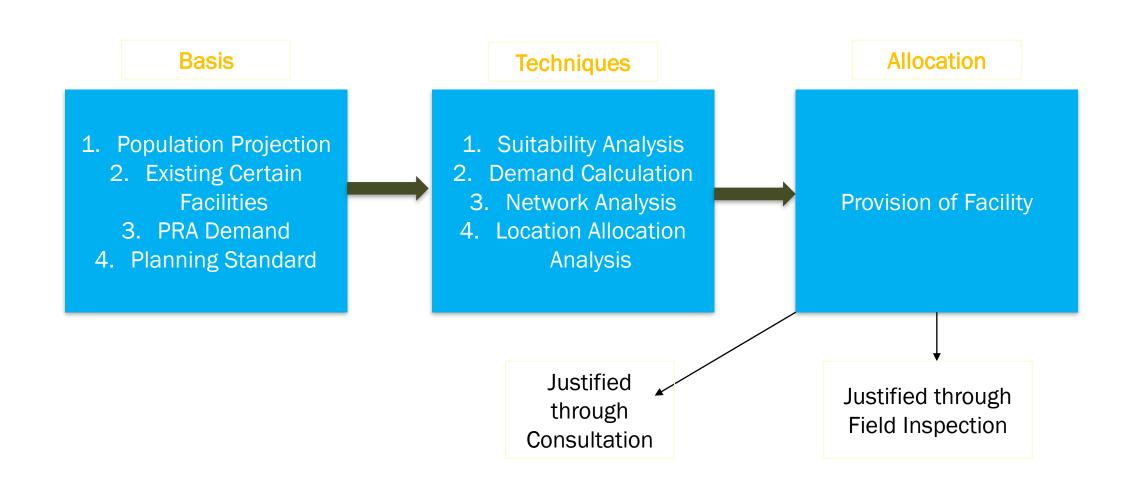

Urban Suitability Maps

Urban Suitability		
Criteria	Weightage	
DEM	20	
Major Roads	25	
Infrastructure		
Suitability	10	
1/Hydrological		
Suitability	20	
1/Agricultural		
Suitability	25	



Flood Flow Zone Maps

Flooded Land Category	Water Depth	Percen tage area	Remarks
1st Degree Flooded area	0-0.3m	28%	Not Inundated Area
2nd Degree Flooded area	0.31- 0.9m	9%	Ocationally Sub Flood Flow Area
3rd Degree Flooded area	0.91- 1.8m	13%	Sub Flood Flow Area
4th Degree Flooded area	1.81- 3.6m	22%	Ocationally Main Flood Flow Area
5th Degree Flooded area	>3.6m	27%	Main Flood Flow Area



Plan Preparation

Sub Regional Plan Preparation Road Network Sub Regional Structure Plan Connectivity Plan 1. Sub Regional Plan Map Waterways 2. Regional Life Line Map Ecology

Urban Area Plan and Rural Area Plan Preparation

Action Area Plan Preparation

- □ Prioritized Project from PRA
- Detailing of an Action Area Plan

Development Plan

SUB REGIONAL PLAN

Components of Sub-regional Plan

- ☐ Connectivity and Transportation Network
- ☐ Biodiversity and Nature Conservation
- ☐ Community Resilience through Disaster Management

Policies for Sub-regional Planning

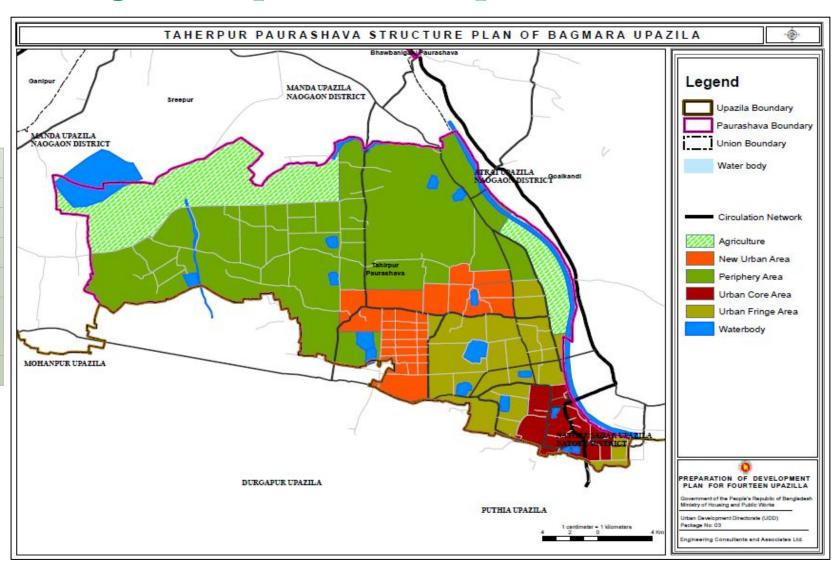
- ☐ Connectivity and Transportation Network
- Accelerate high standard road links through widening of primary and secondary and construction of new tertiary roads.
- Developing an integrated local, regional and national transportation
- Improving local transport network within the Upazila linking the nearest districts.
- Establishing a Railway Platform Connecting to the Jogi Para Union for better communications.
- ☐ Biodiversity and Nature Conservation
- Conserve natural/environmental resources like hills, reserve forests and water bodies.
- Execute land use planning for the enhancement of ecosystem and species diversity.
- Conserving the play field, open space, park and natural water reservoir.
- ☐ Community Resilience through Disaster Management
- Identification of seismic hazard prone zones.
- Provision and implementation of a risk sensitive land use planning.

SDGs and Proposed Plan of Bagmara Upazila

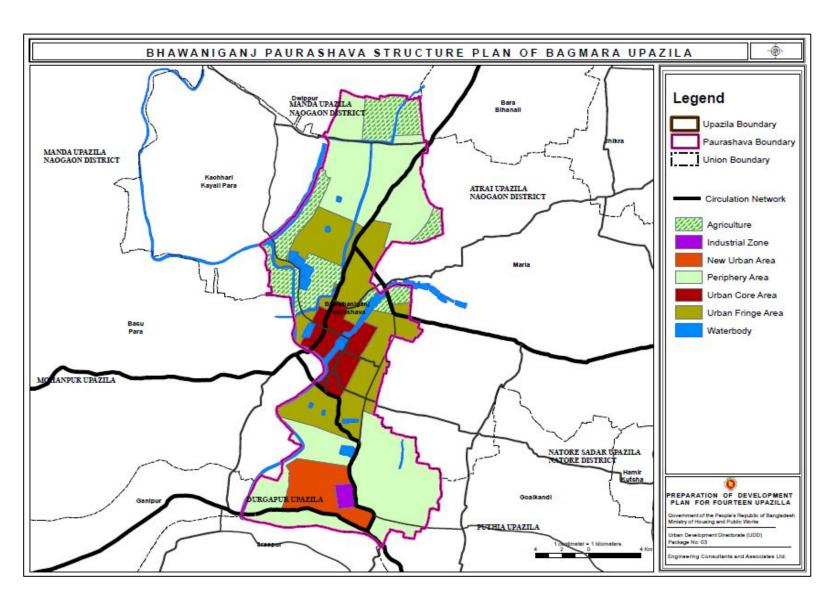
SDGs	Proposed Plan of Bagmara Upazila
SDG-1: Ensure access for all to adequate housing and basic services and upgrade slums	Core Housing Area- for low income peoplePlanned Housing Area
SDG-2: Provide access to safe affordable accessible and sustainable transport systems for all, improving road safety, notable by expanding public transport.	Over pass
SDG-3: Enhance inclusive and sustainable urbanization and capacity for participatory, integrated and sustainable human settlement planning and management in all countries	 Hydrological suitability analysis
SDG-4: Strengthen efforts to protect and safeguard the worlds cultural and natural heritage	Bir Kutsha Jomidar BariGoalkandi Rajar Bari
SDG-5: Reduce the number of deaths and the number of people affected and substantially decrease the direct economic losses .	analyzing previous 20 years flood flow data.

SDG-6: Reduce the adverse per capita environmental impact of cities including by paying quality and municipal and other waste management.	
SDG-7: Reduce the adverse per capita environment impact of cities including by paying special attention to air quality and municipal and other waste management	• In Urban, and peri-urban area brick field is restricted within 3 km. buffer
SDG-8: Provide universal access to safe inclusive and accessible green and public spaces in particular for women and children, older persons and persons with disabilities.	Village parks,
SDG-9: Support positive economic , social and environment links between urban, peri-urban and rural areas by strengthening national and regional development planning	Shopping complex,Pauro market,
SDG-10: Support least developed countries including through financial and technical assistance in building sustainable and resilient buildings utilizing local material.	 Risk Assessment survey Collection of 8 type's structural data such as Overhanging, Soft Story,

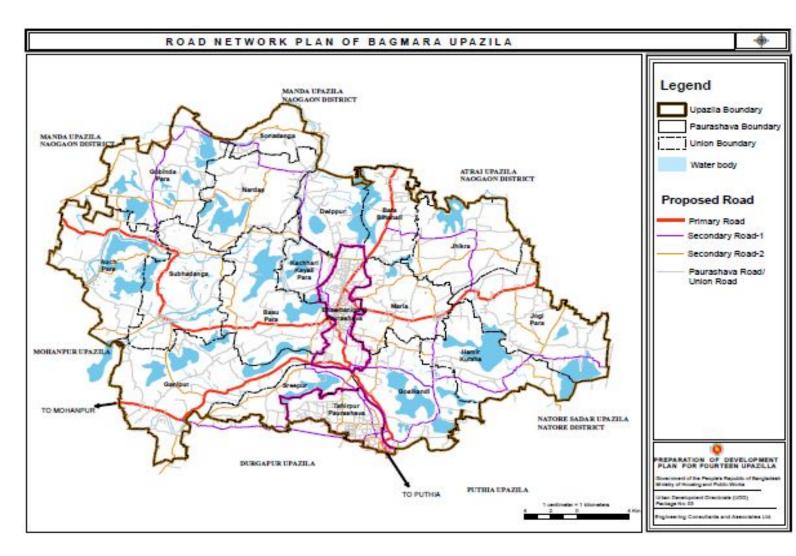
STRUCTURE PLAN


Structure Plan of Bagmara Upazila

Area(Acre)
458.407315
554.369952
355.444428
38425.70047
31059.09998
5536.848893
11023.7377
2272.860141


Urban Structure Plan of Bagmara Upazila: Taherpur Paurashava

Type	Area
Periphery Area	1367.26546
Urban Core Area	137.085676
New Urban Area	302.739842
Agriculture	503.300351
Urban Fringe	
Area	422.878452
Waterbody	199.605746


Urban Structure Plan of Bagmara Upazila: Bwabaniganj Paurashava

Type	Area
Periphery Area	1353.114
Agriculture	447.847
Urban Core Area	209.6371
Urban Fringe Area	720.7871
Industrial Zone	27.87249
New Urban Area	198.3439
Waterbody	259.6626

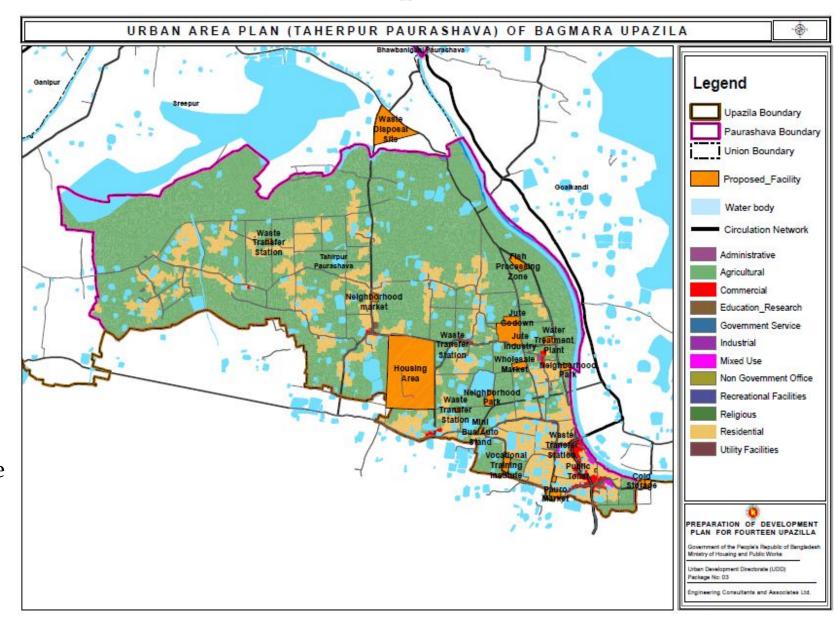
Proposed Road Network Plan of Bagmara Upazila

Proposed Road Type	Road Length(Km)
Primary Road	67.44
Secondary Road-1	128.8
Secondary Road-2	81.18
Pouro/Union Road	530.77
Total	808.19

URBAN AREA PLAN

Proposed Urban Area Plan of Bwabanigonj Pourashava

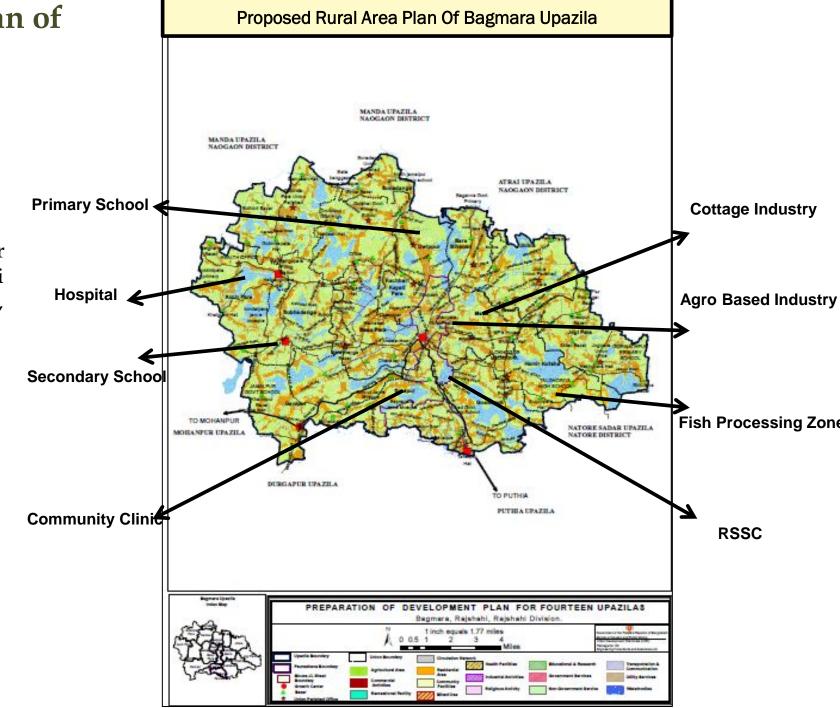
The proposed facilities are:


- ✓ Stadium
- ✓ Poor Housing
- ✓ Neighborhood Park
- ✓ Shopping Complex
- ✓ Hospital
- ✓ Multi-Purpose Hall
- ✓ Future Government Office
- ✓ Water Treatment Plant
- ✓ Pouro Market
- ✓ Waste Transfer Station
- ✓ Agri Training Center
- ✓ Community Center
- ✓ Youth Development Center
- ✓ Bus Terminal
- ✓ Night Soil Treatment Plant
- ✓ Industrial Zone
- ✓ Truck Terminal etc.

Proposed Urban Area Plan of Taherpur Pourashava

The proposed facilities are:

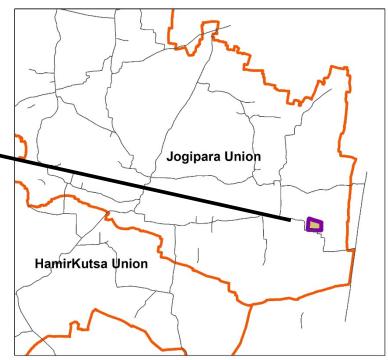
- ✓ Waste Disposal Site
- ✓ Waste Transfer Station
- ✓ Neighborhood Market
- ✓ Fish Processing Zone
- ✓ Housing Area
- ✓ Water Treatment Plant
- ✓ Jute Godown
- ✓ Jute Industry
- ✓ Wholesale Market
- ✓ Neighborhood Park
- ✓ Mini Bus Auto Stand
- ✓ Public toilet
- ✓ Vocational Training Institute
- ✓ Cold Storage
- ✓ Pouro Market



Rural Area Plan

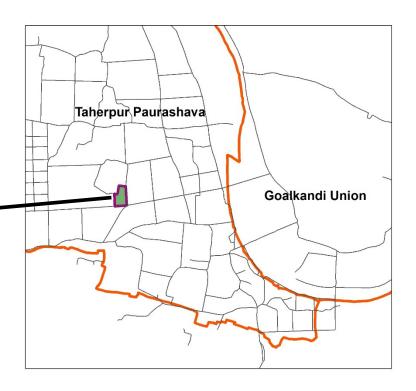
Proposed Rural Area Plan of Bagmara Upazila

The proposed facilities are:


- ✓ RSSC (Rural Sales And Service Center)
- ✓ Agro Based Industry- Maria
- ✓ Cottage Industry- Maria
- ✓ Cold Storage- Ganipur, Dwippur
- ✓ Fish Processing Zone-Goalkandi
- ✓ Neighborhood Park Auch Para, Subhadanga, Sreepur
- ✓ Primary School-Ganipur, Bara Bihanali
- ✓ Secondary School- Ganipur
- ✓ College-Hamir Kutsha, Dwippur, GoalKandi
- ✓ Mini Bus/Auto Stand
- ✓ Health Center- Basu Para, Gobinda Para, Ganipur, Hamir Kutsha, Jhikra, Nardas, Sonadanga, Subhadanga, Bara Bihanali, Dwippur
- ✓ Waste Transfer Station- Every Union

Action Area Plan

Action Plan for Bir Kutsha Raj Bari, Bagmara Legend Trees Road Parks Bridge Bank High school Car Parking Land Office Graveyard Post Office Museum Proposed Market Play Field Raj bari Palace Roundabout 0 10 20 40 60 Primary school Temple Meters Waterbody Birkutsha Raj Bari House Shop


Action Area Plan for Bir Kutsha Raj Bari, Bagmara

Area Of Proposed Action Area Plan is 8.5 Acres

Action Area Plan (Neighbourhood Park, Taherpur) Legends Playground for Kids Basketball Food Court Zone Court Playground Circulation Network Neighbourhood Park 0 4.5 9 Playground **Parking** Lot

Action Area Plan of Neighborhood Park, Taherpur

Area Of Proposed Action Area Plan is 3.14 Acres

Thank You for Your Kind Attention